RNN in PyTorch

hyperkai

Super Kai (Kazuya Ito)

Posted on September 28, 2024

RNN in PyTorch

Buy Me a Coffee

*Memos:

RNN() can get the two 2D or 3D tensors of the one or more elements computed by RNN from the 2D or 3D tensor of zero or more elements as shown below:

*Memos:

  • The 1st argument for initialization is input_size(Required-Type:int). *It must be 0 <= x.
  • The 2nd argument for initialization is hidden_size(Required-Type:int). *It must be 1 <= x.
  • The 3rd argument for initialization is num_layers(Optional-Default:1-Type:int): *Memos:
    • It must be 1 <= x.
    • It must be 1 < x, if dropout is 0 < x.
    • Its number is same as the number of bias_ih_lx, bias_ih_lx_reverse, bias_hh_lx, bias_hh_lx_reverse, weight_ih_lx, weight_ih_lx_reverse, weight_hh_lx and weight_hh_lx_reverse so if it's 3, there are bias_ih_l0, bias_ih_l1, bias_ih_l2, bias_ih_l0_reverse, bias_ih_l1_reverse, bias_ih_l2_reverse, bias_hh_l0, bias_hh_l1 etc.
  • The 4th argument for initialization is nonlinearity(Optional-Default:1-Type:str). *'tanh' or 'relu' can be set.
  • The 5th argument for initialization is bias(Optional-Default:True-Type:bool). *My post explains bias argument.
  • The 6th argument for initialization is batch_first(Optional-Default:False-Type:bool).
  • The 7th argument for initialization is dropout(Optional-Default:0.0-Type:int or float). *It must be 0 <= x <= 1.
  • The 8th argument for initialization is bidirectional(Optional-Default:False-Type:bool). *If it's True, bias_ih_lx_reverse, bias_hh_lx_reverse, weight_ih_lx_reverse and weight_hh_lx_reverse are added.
  • The 9th argument for initialization is device(Optional-Default:None-Type:str, int or device()): *Memos:
  • The 10th argument for initialization is dtype(Optional-Default:None-Type:dtype): *Memos:
  • The 1st argument is input(Required-Type:tensor of float or complex): *Memos:
    • It must be the 2D or 3D tensor of zero or more elements.
    • The number of the elements of the deepest dimension must be same as input_size.
    • Its device and dtype must be same as RNN()'s.
    • complex must be set to dtype of RNN() to use a complex tensor.
    • The tensor's requires_grad which is False by default is set to True by RNN().
  • The 2nd argument is hx(Optional-Default:None-Type:tensor of float or complex). *Its D, device and dtype must be same as input's.
  • rnn1.device and rnn1.dtype don't work.
import torch
from torch import nn

tensor1 = torch.tensor([[8., -3., 0., 1., 5., -2.]])

tensor1.requires_grad
# False

torch.manual_seed(42)

rnn1 = nn.RNN(input_size=6, hidden_size=3)

tensor2 = rnn1(input=tensor1)
tensor2
# (tensor([[0.9590, -0.9501, 0.9999]], grad_fn=<SqueezeBackward1>),
#  tensor([[0.9590, -0.9501, 0.9999]], grad_fn=<SqueezeBackward1>))

tensor2[0].requires_grad
tensor2[1].requires_grad
# True

rnn1
# RNN(6, 3)

rnn1.input_size
# 6

rnn1.hidden_size
# 3

rnn1.num_layers
# 1

rnn1.nonlinearity
# 'tanh'

rnn1.bias
# True

rnn1.batch_first
# False

rnn1.dropout
# 0.0

rnn1.bidirectional
# False

rnn1.bias_ih_l0
# Parameter containing:
# tensor([-0.3471, 0.0545, -0.5702], requires_grad=True)

rnn1.bias_hh_l0
# Parameter containing:
# tensor([0.5214, -0.4904, 0.4457], requires_grad=True)

rnn1.weight_ih_l0
# Parameter containing:
# tensor([[0.4414, 0.4792, -0.1353, 0.5304, -0.1265, 0.1165],
#         [-0.2811, 0.3391, 0.5090, -0.4236, 0.5018, 0.1081],
#         [0.4266, 0.0782, 0.2784, -0.0815, 0.4451, 0.0853]],
#        requires_grad=True)

rnn1.weight_hh_l0
# Parameter containing:
# tensor([[-0.2695, 0.1472, -0.2660],
#         [-0.0677, -0.2345, 0.3830],
#         [-0.4557, -0.2662, -0.1630]],
#        requires_grad=True)

torch.manual_seed(42)

rnn2 = nn.RNN(input_size=3, hidden_size=3)

rnn2(input=tensor2[0])
rnn2(input=tensor2[1])
# (tensor([[-0.4656, 0.5770, 0.0342]], grad_fn=<SqueezeBackward1>),
#  tensor([[-0.4656, 0.5770, 0.0342]], grad_fn=<SqueezeBackward1>))

torch.manual_seed(42)

rnn = nn.RNN(input_size=6, hidden_size=3, num_layers=1, nonlinearity='tanh',
             bias=True, batch_first=False, dropout=0.0, bidirectional=False,
             device=None, dtype=None)
rnn(input=tensor1, hx=None)
rnn(input=tensor1, hx=torch.tensor([[0., 0., 0.]]))
# (tensor([[0.9590, -0.9501, 0.9999]], grad_fn=<SqueezeBackward1>),
#  tensor([[0.9590, -0.9501, 0.9999]], grad_fn=<SqueezeBackward1>))

my_tensor = torch.tensor([[8., -3., 0.],
                          [1., 5., -2.]])
torch.manual_seed(42)

rnn = nn.RNN(input_size=3, hidden_size=3)
rnn(input=my_tensor)
# (tensor([[0.9421, 0.9998, -0.9963],
#          [0.9921, -0.2163, 0.6621]], grad_fn=<SqueezeBackward1>),
#  tensor([[0.9921, -0.2163, 0.6621]], grad_fn=<SqueezeBackward1>))

my_tensor = torch.tensor([[8.], [-3.], [0.],
                          [1.], [5.], [-2.]])
torch.manual_seed(42)

rnn = nn.RNN(input_size=1, hidden_size=3)
rnn(input=my_tensor)
# (tensor([[0.9991, 0.9997, -0.6159],
#          [-0.5700, -0.8242, 0.6535],
#          [0.2195, 0.6271, 0.2563],
#          [0.6928, 0.8575, 0.4446],
#          [0.9935, 0.9969, -0.1270],
#          [-0.1506, -0.4145, 0.6044]], grad_fn=<SqueezeBackward1>),
#  tensor([[-0.1506, -0.4145, 0.6044]], grad_fn=<SqueezeBackward1>))

my_tensor = torch.tensor([[[8.], [-3.], [0.]],
                          [[1.], [5.], [-2.]]])
torch.manual_seed(42)

rnn = nn.RNN(input_size=1, hidden_size=3)
rnn(input=my_tensor)
# (tensor([[[0.9991, 0.9997, -0.6159],
#           [-0.7527, -0.7232, 0.6466],
#           [0.3320, 0.4802, 0.3485]],
#          [[0.8069, 0.6334, 0.2359],
#           [0.9809, 0.9968, -0.2792],
#           [-0.3643, -0.1861, 0.6483]]], grad_fn=<StackBackward0>),
#  tensor([[[0.8069, 0.6334, 0.2359],
#           [0.9809, 0.9968, -0.2792],
#           [-0.3643, -0.1861, 0.6483]]], grad_fn=<StackBackward0>))

my_tensor = torch.tensor([[[8.+0.j], [-3.+0.j], [0.+0.j]],
                          [[1.+0.j], [5.+0.j], [-2.+0.j]]])
torch.manual_seed(42)

rnn = nn.RNN(input_size=1, hidden_size=3, dtype=torch.complex64)
rnn(input=my_tensor)
# (tensor([[[0.9985-1.9315e-04j, -0.9702+4.0555e-01j, -0.9542+1.9353e-01j],
#           [-1.0401+1.6018e-01j, 1.4827+4.1275e-01j, 0.3302-5.8074e-01j],
#           [0.1235-9.3636e-01j, 0.2921-2.3584e-01j, -0.1383-2.1280e-01j]], 
#          [[-0.7388+4.8243e-01j, -0.1439+6.0930e-01j, -0.1099-4.2196e-01j],
#           [0.9995+1.1798e-03j, -0.6179-1.3320e+00j, -0.6428+1.3737e-01j],
#           [-1.8129+5.6506e-01j, 1.4051+4.5077e-01j, 0.2443-1.2884e-01j]]],
#         grad_fn=<StackBackward0>),
#  tensor([[[-0.7388+4.8243e-01j, -0.1439+6.0930e-01j, -0.1099-4.2196e-01j],
#           [0.9995+1.1798e-03j, -0.6179-1.3320e+00j, -0.6428+1.3737e-01j],
#           [-1.8129+5.6506e-01j, 1.4051+4.5077e-01j, 0.2443-1.2884e-01j]]],
#         grad_fn=<StackBackward0>))
Enter fullscreen mode Exit fullscreen mode
💖 💪 🙅 🚩
hyperkai
Super Kai (Kazuya Ito)

Posted on September 28, 2024

Join Our Newsletter. No Spam, Only the good stuff.

Sign up to receive the latest update from our blog.

Related

RNN in PyTorch
python RNN in PyTorch

September 28, 2024