Building A Generative AI Platform: A Deep Dive into Architecture and Implementation
Aadya Madankar
Posted on August 11, 2024
As a developer in the AI space, understanding the architecture of generative AI platforms is crucial. These systems are at the forefront of modern AI applications, capable of producing human-like text, images, and more. In this article, we'll explore the technical aspects of building such a platform, focusing on the key components and their implementation.
#Architecture Overview
A generative AI platform typically consists of several interconnected components:
Orchestration Layer
Context Construction Module
Input/Output Guardrails
Model Gateway
Caching System
Action Handlers (Read-only and Write)
Database Layer
Observability Stack
Let's dive into each of these components and discuss their technical implementation.
#1. Orchestration Layer
The orchestration layer is the brain of the operation. It's typically implemented as a distributed system using technologies like Apache Airflow or Kubernetes.
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
def process_query(query):
# Implement query processing logic
pass
def generate_response(context):
# Implement response generation logic
pass
with DAG('ai_platform_workflow', default_args=default_args, schedule_interval=None) as dag:
process_task = PythonOperator(
task_id='process_query',
python_callable=process_query,
op_kwargs={'query': '{{ dag_run.conf["query"] }}'}
)
generate_task = PythonOperator(
task_id='generate_response',
python_callable=generate_response,
op_kwargs={'context': '{{ ti.xcom_pull(task_ids="process_query") }}'}
)
process_task >> generate_task
This DAG defines a simple workflow for processing a query and generating a response.
#2. Context Construction Module
The context construction module often uses techniques like RAG (Retrieval-Augmented Generation) and query rewriting. Here's a simplified implementation using the langchain library:
from langchain import PromptTemplate, LLMChain
from langchain.llms import OpenAI
from langchain.retrievers import ElasticSearchBM25Retriever
# Initialize retriever
retriever = ElasticSearchBM25Retriever(es_url="http://localhost:9200", index_name="documents")
# Define prompt template
template = """
Context: {context}
Query: {query}
Generate a response based on the above context and query.
"""
prompt = PromptTemplate(template=template, input_variables=["context", "query"])
# Initialize LLM
llm = OpenAI()
llm_chain = LLMChain(prompt=prompt, llm=llm)
def enhance_context(query):
relevant_docs = retriever.get_relevant_documents(query)
context = "\n".join([doc.page_content for doc in relevant_docs])
return llm_chain.run(context=context, query=query)
This code snippet demonstrates how to use RAG to enhance the context of a query before passing it to the language model.
#3. Input/Output Guardrails
Implementing guardrails involves creating filters for both input and output. Here's a basic example:
import re
def input_filter(query):
# Remove potential SQL injection attempts
query = re.sub(r'\b(UNION|SELECT|FROM|WHERE)\b', '', query, flags=re.IGNORECASE)
# Remove any non-alphanumeric characters except spaces
query = re.sub(r'[^\w\s]', '', query)
return query
def output_filter(response):
# Remove any potential harmful content
harmful_words = ['exploit', 'hack', 'steal']
for word in harmful_words:
response = re.sub(r'\b' + word + r'\b', '[REDACTED]', response, flags=re.IGNORECASE)
return response
These functions provide basic filtering for input queries and output responses.
#4. Model Gateway
The model gateway manages access to different AI models. Here's a simple implementation:
class ModelGateway:
def __init__(self):
self.models = {}
self.token_usage = {}
def register_model(self, model_name, model_instance):
self.models[model_name] = model_instance
self.token_usage[model_name] = 0
def get_model(self, model_name):
return self.models.get(model_name)
def generate(self, model_name, prompt):
model = self.get_model(model_name)
if not model:
raise ValueError(f"Model {model_name} not found")
response = model.generate(prompt)
self.token_usage[model_name] += len(prompt.split())
return response
gateway = ModelGateway()
gateway.register_model("gpt-3", OpenAIModel())
gateway.register_model("t5", T5Model())
This gateway allows for registering multiple models and keeps track of token usage.
#5. Caching System
Implementing a caching system can significantly improve performance. Here's a basic semantic cache:
import faiss
import numpy as np
class SemanticCache:
def __init__(self, dimension):
self.index = faiss.IndexFlatL2(dimension)
self.responses = []
def add(self, query_vector, response):
self.index.add(np.array([query_vector]))
self.responses.append(response)
def search(self, query_vector, threshold):
D, I = self.index.search(np.array([query_vector]), 1)
if D[0][0] < threshold:
return self.responses[I[0][0]]
return None
cache = SemanticCache(768) # Assuming 768-dimensional BERT embeddings
This cache uses FAISS for efficient similarity search of query embeddings.
#6. Action Handlers
Action handlers implement the business logic for various operations:
```class ReadOnlyActions:
@staticmethod
def vector_search(query, index):
# Implement vector search logic
pass
@staticmethod
def sql_query(query, database):
# Implement SQL query logic
pass
class WriteActions:
@staticmethod
def update_database(data, database):
# Implement database update logic
pass
@staticmethod
def send_email(recipient, content):
# Implement email sending logic
pass
These classes provide a framework for implementing various actions that the AI platform might need to perform.
**#7. Database Layer**
The database layer typically involves multiple types of databases:
from pymongo import MongoClient
from elasticsearch import Elasticsearch
Document store
mongo_client = MongoClient('mongodb://localhost:27017/')
doc_store = mongo_client['ai_platform']['documents']
Vector database
es_client = Elasticsearch([{'host': 'localhost', 'port': 9200}])
vector_index = 'embeddings'
Relational database
import sqlite3
conn = sqlite3.connect('platform.db')
This setup includes MongoDB for document storage, Elasticsearch for vector search, and SQLite for relational data.
**#8. Observability Stack**
Implementing proper observability is crucial for maintaining and improving the platform:
```import logging
from prometheus_client import Counter, Histogram
# Logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Metrics
request_counter = Counter('ai_platform_requests_total', 'Total number of requests')
latency_histogram = Histogram('ai_platform_request_latency_seconds', 'Request latency in seconds')
# Example usage
@latency_histogram.time()
def process_request(request):
request_counter.inc()
logger.info(f"Processing request: {request}")
# Process the request
pass
This setup includes basic logging and Prometheus metrics for monitoring request counts and latencies.
#Conclusion
Building a generative AI platform is a complex task that requires careful integration of multiple components. Each part of the system plays a crucial role in delivering accurate, efficient, and safe AI-generated content. As you develop your own AI platform, remember that this architecture is just a starting point. You'll need to adapt and expand it based on your specific requirements and use cases.
The field of AI is rapidly evolving, and staying up-to-date with the latest advancements is crucial. Keep experimenting, learning, and pushing the boundaries of what's possible with generative AI!
Posted on August 11, 2024
Join Our Newsletter. No Spam, Only the good stuff.
Sign up to receive the latest update from our blog.