สร้าง Object Detection ด้วย PyTorch

thanva_thanawat

Thanawat Srithongkul

Posted on April 17, 2024

สร้าง Object Detection ด้วย PyTorch

การตรวจจับวัตถุในภาพเป็นหนึ่งในศาสตร์ในการประมวลผลภาพ โดยโมเดล Object Detection ช่วยให้เราสามารถตรวจจับวัตถุและหมวดหมู่วัตถุต่างๆ ในภาพได้อย่างมีประสิทธิภาพ ไม่ว่าจะเป็นการตรวจจับรถยนต์ในถนน, การตรวจจับใบหน้าในภาพ, หรือการตรวจจับวัตถุในภาพทางด้านการแพทย์ เราสามารถประยุกต์ใช้งาน Object Detection ได้ในหลายด้านของชีวิตประจำวันและอุตสาหกรรมต่าง ๆ

ในบล็อกนี้ ท่านจะได้เรียนรู้ขั้นตอนการสร้างโมเดล Object Detection ใน PyTorch ซึ่งเป็นไลบรารีที่มีความนิยมและมีความสามารถที่ยอดเยี่ยมในการพัฒนาโมเดลปัญญาประดิษฐ์

  • ขั้นตอนการทำ

ขั้นตอนที่ 1 นำเข้า libraries ที่ต้องใช้ทั้งหมด

!pip install xmltodict
import os, cv2, random, xmltodict, torch, pandas as pd, numpy as np
from glob import glob
from PIL import Image
from torch.utils.data import random_split, Dataset, DataLoader
from matplotlib import pyplot as plt

from torch import Tensor
from torchvision.transforms import functional as F, transforms as T
from typing import Dict, Optional, Tuple, List
from google.colab import drive
drive.mount('/content/drive')

from torchvision.models.detection import fasterrcnn_resnet50_fpn
!pip install pycocotools
import torch.distributed as dist, datetime
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
import pycocotools.mask as mask_util
from contextlib import redirect_stdout
import copy, io

import math, sys, time, torch, torchvision
import torchvision.models.detection.mask_rcnn
from pycocotools.coco import COCO
from pycocotools import mask as coco_mask
from collections import defaultdict, deque
Enter fullscreen mode Exit fullscreen mode

ขั้นตอนที่ 2 โหลดข้อมูล และสร้าง DataLoader สำหรับการ Train โมเดล Object Detection ด้วย PyTorch เพื่อนำไปใช้ในภายหลัง

class ObjectDetectionCustomDataset(Dataset):

    def __init__(self, root, transformations = None, size = 224, im_files = [".jpg", ".png", ".jpeg"]):

        self.root, self.size, self.transformations = root, size, transformations
        self.class_names, self.class_counts = {}, 0
        self.data_info = sorted(glob(f"{root}/annotations/*.xml"))

        for idx, data_info in enumerate(self.data_info):

            info = xmltodict.parse(open(f"{data_info}","r").read())

            bbox_info = info["annotation"]["object"]
            if isinstance(bbox_info, list):
                for bb_info in bbox_info:
                    if class_name not in self.class_names: self.class_names[class_name] = self.class_counts; self.class_counts += 1

            elif isinstance(bbox_info, dict): 
                for bb_info in bbox_info:
                    class_name = bbox_info["name"]
                    if class_name not in self.class_names: self.class_names[class_name] = self.class_counts; self.class_counts += 1

    def __len__(self): return len(self.data_info)

    def get_info(self, idx): return xmltodict.parse(open(f"{self.data_info[idx]}","r").read())

    def read_im(self, info): return Image.open(f"{self.root}/images/{info['annotation']['filename']}").convert("RGB")

    def get_coordinates(self, bbox): return float(bbox["xmin"]), float(bbox["ymin"]), float(bbox["xmax"]), float(bbox["ymax"])

    def get_bboxes(self, info):

        bboxes, class_names = [], []
        bbox_info = info["annotation"]["object"]

        if isinstance(bbox_info, list):
            for bb_info in bbox_info:
                bbox = bb_info["bndbox"]
                class_name = bb_info["name"]
                class_names.append(class_name)
                bboxes.append(self.get_coordinates(bbox))

        elif isinstance(bbox_info, dict): 
            for bb_info in bbox_info:
                if bb_info == "bndbox":
                    bbox = bbox_info[bb_info]
                    class_name = bbox_info["name"]
                    bboxes.append(self.get_coordinates(bbox))
                    class_names.append(class_name)

        return torch.as_tensor(bboxes, dtype = torch.float32), class_names

    def get_label(self, class_name): return self.class_names[class_name]

    def get_area(self, bboxes): return (bboxes[:, 3] - bboxes[:, 1]) * (bboxes[:, 2] - bboxes[:, 0])

    def create_target(self, bboxes, labels, rasm_id, area, is_crowd): target = {}; target["boxes"] = bboxes; target["labels"] = labels; target["image_id"] = rasm_id; target["area"] = area; target["iscrowd"] = is_crowd; return target

    def __getitem__(self, idx):

        info = self.get_info(idx)
        im = self.read_im(info)
        bboxes, class_names = self.get_bboxes(info)
        labels = torch.tensor([self.get_label(class_name) for class_name in class_names], dtype = torch.int64)

        rasm_id = torch.tensor([idx])
        area = self.get_area(bboxes)
        is_crowd = torch.zeros((len(bboxes), ), dtype = torch.int64)

        target = self.create_target(bboxes, labels, rasm_id, area, is_crowd)

        if self.transformations is not None: im, target = self.transformations(im, target)

        return im, target

def custom_collate_fn(batch): return tuple(zip(*batch))

def get_dls(root, transformations, bs, split = [0.8, 0.1], ns = 4):

    ds = ObjectDetectionCustomDataset(root = root, transformations = transformations)

    all_len = len(ds); tr_len = int(all_len * split[0]); val_len = int(all_len * split[1])
    tr_ds, val_ds, ts_ds = random_split(dataset = ds, lengths = [tr_len, val_len, all_len - tr_len - val_len])

    tr_dl, val_dl, ts_dl = DataLoader(tr_ds, batch_size = bs, collate_fn = custom_collate_fn, shuffle = True, num_workers = ns), DataLoader(val_ds, batch_size = bs, collate_fn = custom_collate_fn, shuffle = False, num_workers = ns), DataLoader(ts_ds, batch_size = 1, collate_fn = custom_collate_fn, shuffle = False, num_workers = ns)

    return tr_dl, val_dl, ts_dl, ds.class_names
Enter fullscreen mode Exit fullscreen mode

ขั้นตอนที่ 3 สร้างเทรนส์ฟอร์เมชันและ เตรียมข้อมูลสำหรับใช้ Train โมเดล Object Detection
ข้อมูลเซ็ตรูปภาพ: Download

class Compose:
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, image, target):
        for t in self.transforms:
            image, target = t(image, target)
        return image, target

class PILToTensor(torch.nn.Module):
    def forward(
        self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
    ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
        image = F.pil_to_tensor(image)
        return image, target

class Normalize(torch.nn.Module):
    def forward(self, image: Tensor, target: Optional, mean: List[float] = [0.485, 0.456, 0.406], std: List[float] = [0.229, 0.224, 0.225]):
        image = F.normalize(tensor = image, mean = mean, std = std)
        return image, target

class ConvertImageDtype(torch.nn.Module):
    def __init__(self, dtype: torch.dtype) -> None:
        super().__init__()
        self.dtype = dtype

    def forward(
        self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
    ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
        image = F.convert_image_dtype(image, self.dtype)
        return image, target

class RandomHorizontalFlip(T.RandomHorizontalFlip):
    def forward(
        self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
    ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
        if torch.rand(1) < self.p:
            image = F.hflip(image)
            if target is not None:
                _, _, width = F.get_dimensions(image)
                if "masks" in target:
                    target["masks"] = target["masks"].flip(-1)
                if "keypoints" in target:
                    keypoints = target["keypoints"]
                    keypoints = _flip_coco_person_keypoints(keypoints, width)
                    target["keypoints"] = keypoints
        return image, target

def get_transform(train):

    transformations = []
    transformations.append(PILToTensor())
    transformations.append(ConvertImageDtype(torch.float))
    transformations.append(Normalize())

    if train: transformations.append(RandomHorizontalFlip(0.5))

    return Compose(transformations)

tfs = get_transform(train = False)
data_path = "/content/drive/My Drive/dataSet/archive"
tr_dl, val_dl, ts_dl, class_names = get_dls(root = data_path, transformations = tfs, bs = 4)
print(len(tr_dl), len(val_dl), len(ts_dl), class_names)
Enter fullscreen mode Exit fullscreen mode

ขั้นตอนที่ 4 แปลง Tensor เป็นภาพ และแสดงผลภาพ 20 ภาพ

def tensor_2_im(t, t_type = "rgb", inv_trans = False):

    assert t_type in ["rgb", "gray"], "Rasm RGB yoki grayscale ekanligini aniqlashtirib bering."
    gray_tfs = T.Compose([T.Normalize(mean = [ 0.], std = [1/0.5]), T.Normalize(mean = [-0.5], std = [1])])
    rgb_tfs  = T.Compose([T.Normalize(mean = [ 0., 0., 0. ], std = [ 1/0.229, 1/0.224, 1/0.225 ]), T.Normalize(mean = [ -0.485, -0.456, -0.406 ], std = [ 1., 1., 1. ])])

    invTrans = gray_tfs if t_type == "gray" else rgb_tfs 

    return (invTrans(t) * 255).detach().cpu().permute(1,2,0).numpy().astype(np.uint8) if inv_trans else (t * 255).detach().cpu().permute(1,2,0).numpy().astype(np.uint8)

def visualize(data, n_ims, rows, cmap = None):

    assert cmap in ["rgb", "gray"], "Rasmni oq-qora yoki rangli ekanini aniqlashtirib bering!"
    if cmap == "rgb": cmap = "viridis"

    plt.figure(figsize = (20, 10))
    indekslar = [random.randint(0, len(data) - 1) for _ in range(n_ims)]
    for idx, indeks in enumerate(indekslar):
        im, target = data[indeks]
        img = tensor_2_im(im, inv_trans = True)
        bbox_class_names = []
        for i, cntr in enumerate(target["boxes"]):
            r, g, b = [random.randint(0, 255) for _ in range(3)]
            x, y, w, h = [round(c.item()) for c in cntr]
            bbox_class_names.append(list(class_names.keys())[target["labels"][i].item()])
            cv2.rectangle(img = img, pt1 = (x, y), pt2 = (w, h), color = (r, g, b), thickness = 2)
        bbox_class_names = [bbox_class_name for bbox_class_name in bbox_class_names]
        plt.subplot(rows, n_ims // rows, idx + 1)

        plt.imshow(img); plt.title(f"{bbox_class_names}")

        plt.axis("off")

visualize(tr_dl.dataset, 20, 4, "rgb")
Enter fullscreen mode Exit fullscreen mode

ผลที่ได้จาก code

Image description

ขั้นตอนที่ 5 การเตรียมโมเดลสำหรับการ Fine-tuning
ขั้นตอนนี้เป็นการเตรียมโมเดล Faster R-CNN ด้วย ResNet-50-FPN สำหรับการ Fine-tuning เพื่อให้มีประสิทธิภาพต่อข้อมูลและคลาสที่เรามีใน class_names

m = fasterrcnn_resnet50_fpn(weights = "DEFAULT")
device, num_classes = "cuda", len(class_names)

# get number of input features for the classifier
in_features = m.roi_heads.box_predictor.cls_score.in_features
# replace the pre-trained head with a new one
m.roi_heads.box_predictor.cls_score = torch.nn.Linear(in_features, num_classes)
m.roi_heads.box_predictor.bbox_pred = torch.nn.Linear(in_features, num_classes * 4)
m.to(device)
optimizer = torch.optim.SGD(m.parameters(), lr = 0.001, momentum = 0.9, weight_decay = 0.0005)
# and a learning rate scheduler
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size = 3, gamma = 0.1)
Enter fullscreen mode Exit fullscreen mode

ขั้นตอนที่ 6 สร้าง Class CocoEvaluator สำหรับวัดผลโมเดล Object Detection

class CocoEvaluator:
    def __init__(self, coco_gt, iou_types):
        if not isinstance(iou_types, (list, tuple)):
            raise TypeError(f"This constructor expects iou_types of type list or tuple, instead  got {type(iou_types)}")
        coco_gt = copy.deepcopy(coco_gt)
        self.coco_gt = coco_gt

        self.iou_types = iou_types
        self.coco_eval = {}
        for iou_type in iou_types:
            self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)

        self.img_ids = []
        self.eval_imgs = {k: [] for k in iou_types}

    def update(self, predictions):
        img_ids = list(np.unique(list(predictions.keys())))
        self.img_ids.extend(img_ids)

        for iou_type in self.iou_types:
            results = self.prepare(predictions, iou_type)
            with redirect_stdout(io.StringIO()):
                coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
            coco_eval = self.coco_eval[iou_type]

            coco_eval.cocoDt = coco_dt
            coco_eval.params.imgIds = list(img_ids)
            img_ids, eval_imgs = evaluate_coco(coco_eval)

            self.eval_imgs[iou_type].append(eval_imgs)

    def synchronize_between_processes(self):
        for iou_type in self.iou_types:
            self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
            create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])

    def accumulate(self):
        for coco_eval in self.coco_eval.values():
            coco_eval.accumulate()

    def summarize(self):
        for iou_type, coco_eval in self.coco_eval.items():
            print(f"IoU metric: {iou_type}")
            coco_eval.summarize()

    def prepare(self, predictions, iou_type):
        if iou_type == "bbox":
            return self.prepare_for_coco_detection(predictions)
        if iou_type == "segm":
            return self.prepare_for_coco_segmentation(predictions)
        if iou_type == "keypoints":
            return self.prepare_for_coco_keypoint(predictions)
        raise ValueError(f"Unknown iou type {iou_type}")

    def prepare_for_coco_detection(self, predictions):
        coco_results = []
        for original_id, prediction in predictions.items():
            if len(prediction) == 0:
                continue

            boxes = prediction["boxes"]
            boxes = convert_to_xywh(boxes).tolist()
            scores = prediction["scores"].tolist()
            labels = prediction["labels"].tolist()

            coco_results.extend(
                [
                    {
                        "image_id": original_id,
                        "category_id": labels[k],
                        "bbox": box,
                        "score": scores[k],
                    }
                    for k, box in enumerate(boxes)
                ]
            )
        return coco_results

    def prepare_for_coco_segmentation(self, predictions):
        coco_results = []
        for original_id, prediction in predictions.items():
            if len(prediction) == 0:
                continue

            scores = prediction["scores"]
            labels = prediction["labels"]
            masks = prediction["masks"]

            masks = masks > 0.5

            scores = prediction["scores"].tolist()
            labels = prediction["labels"].tolist()

            rles = [
                mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0] for mask in masks
            ]
            for rle in rles:
                rle["counts"] = rle["counts"].decode("utf-8")

            coco_results.extend(
                [
                    {
                        "image_id": original_id,
                        "category_id": labels[k],
                        "segmentation": rle,
                        "score": scores[k],
                    }
                    for k, rle in enumerate(rles)
                ]
            )
        return coco_results

    def prepare_for_coco_keypoint(self, predictions):
        coco_results = []
        for original_id, prediction in predictions.items():
            if len(prediction) == 0:
                continue

            boxes = prediction["boxes"]
            boxes = convert_to_xywh(boxes).tolist()
            scores = prediction["scores"].tolist()
            labels = prediction["labels"].tolist()
            keypoints = prediction["keypoints"]
            keypoints = keypoints.flatten(start_dim=1).tolist()

            coco_results.extend(
                [
                    {
                        "image_id": original_id,
                        "category_id": labels[k],
                        "keypoints": keypoint,
                        "score": scores[k],
                    }
                    for k, keypoint in enumerate(keypoints)
                ]
            )
        return coco_results


def convert_to_xywh(boxes):
    xmin, ymin, xmax, ymax = boxes.unbind(1)
    return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)


def merge(img_ids, eval_imgs):
    all_img_ids = all_gather(img_ids)
    all_eval_imgs = all_gather(eval_imgs)

    merged_img_ids = []
    for p in all_img_ids:
        merged_img_ids.extend(p)

    merged_eval_imgs = []
    for p in all_eval_imgs:
        merged_eval_imgs.append(p)

    merged_img_ids = np.array(merged_img_ids)
    merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)

    # keep only unique (and in sorted order) images
    merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
    merged_eval_imgs = merged_eval_imgs[..., idx]

    return merged_img_ids, merged_eval_imgs


def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
    img_ids, eval_imgs = merge(img_ids, eval_imgs)
    img_ids = list(img_ids)
    eval_imgs = list(eval_imgs.flatten())

    coco_eval.evalImgs = eval_imgs
    coco_eval.params.imgIds = img_ids
    coco_eval._paramsEval = copy.deepcopy(coco_eval.params)


def evaluate_coco(imgs):
    with redirect_stdout(io.StringIO()):
        imgs.evaluate()
    return imgs.params.imgIds, np.asarray(imgs.evalImgs).reshape(-1, len(imgs.params.areaRng), len(imgs.params.imgIds))


def all_gather(data):
    """
    Run all_gather on arbitrary picklable data (not necessarily tensors)
    Args:
        data: any picklable object
    Returns:
        list[data]: list of data gathered from each rank
    """
    world_size = get_world_size()
    if world_size == 1:
        return [data]
    data_list = [None] * world_size
    dist.all_gather_object(data_list, data)
    return data_list
Enter fullscreen mode Exit fullscreen mode

ขั้นตอนที่ 7 เตรียมฟังก์ชั่นและคลาสที่ใช้ในการ Train โมเดล Object Detection

def convert_to_coco_api(ds):
    coco_ds = COCO()
    # annotation IDs need to start at 1, not 0, see torchvision issue #1530
    ann_id = 1
    dataset = {"images": [], "categories": [], "annotations": []}
    categories = set()
    for img_idx in range(len(ds)):
        # find better way to get target
        # targets = ds.get_annotations(img_idx)
        img, targets = ds[img_idx]
        image_id = targets["image_id"].item()
        img_dict = {}
        img_dict["id"] = image_id
        img_dict["height"] = img.shape[-2]
        img_dict["width"] = img.shape[-1]
        dataset["images"].append(img_dict)
        bboxes = targets["boxes"].clone()
        bboxes[:, 2:] -= bboxes[:, :2]
        bboxes = bboxes.tolist()
        labels = targets["labels"].tolist()
        areas = targets["area"].tolist()
        iscrowd = targets["iscrowd"].tolist()
        if "masks" in targets:
            masks = targets["masks"]
            # make masks Fortran contiguous for coco_mask
            masks = masks.permute(0, 2, 1).contiguous().permute(0, 2, 1)
        if "keypoints" in targets:
            keypoints = targets["keypoints"]
            keypoints = keypoints.reshape(keypoints.shape[0], -1).tolist()
        num_objs = len(bboxes)
        for i in range(num_objs):
            ann = {}
            ann["image_id"] = image_id
            ann["bbox"] = bboxes[i]
            ann["category_id"] = labels[i]
            categories.add(labels[i])
            ann["area"] = areas[i]
            ann["iscrowd"] = iscrowd[i]
            ann["id"] = ann_id
            if "masks" in targets:
                ann["segmentation"] = coco_mask.encode(masks[i].numpy())
            if "keypoints" in targets:
                ann["keypoints"] = keypoints[i]
                ann["num_keypoints"] = sum(k != 0 for k in keypoints[i][2::3])
            dataset["annotations"].append(ann)
            ann_id += 1
    dataset["categories"] = [{"id": i} for i in sorted(categories)]
    coco_ds.dataset = dataset
    coco_ds.createIndex()
    return coco_ds

def get_coco_api_from_dataset(dataset):
    for _ in range(10):
        if isinstance(dataset, torchvision.datasets.CocoDetection):
            break
        if isinstance(dataset, torch.utils.data.Subset):
            dataset = dataset.dataset
    if isinstance(dataset, torchvision.datasets.CocoDetection):
        return dataset.coco
    return convert_to_coco_api(dataset)

def train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq, scaler = None):
    model.train()
    metric_logger = MetricLogger(delimiter=" | ")
    metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{value:.6f}"))
    header = f"{epoch + 1}-epochdagi "

    lr_scheduler = None
    if epoch == 0:
        warmup_factor = 1.0 / 1000
        warmup_iters = min(1000, len(data_loader) - 1)

        lr_scheduler = torch.optim.lr_scheduler.LinearLR(
            optimizer, start_factor=warmup_factor, total_iters=warmup_iters
        )

    for idx, (images, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
        images = list(image.to(device) for image in images)

        targets = [{k: v.to(device) for k, v in t.items()} for t in targets]  # change here

        # targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
        with torch.cuda.amp.autocast(enabled=scaler is not None):
            loss_dict = model(images, targets)
            losses = sum(loss for loss in loss_dict.values())

        # reduce losses over all GPUs for logging purposes
        loss_dict_reduced = reduce_dict(loss_dict)
        losses_reduced = sum(loss for loss in loss_dict_reduced.values())

        loss_value = losses_reduced.item()

        if not math.isfinite(loss_value):
            print(f"Loss {loss_value} bo'lgani uchun train jarayonini to'xtatamiz...")
            print(loss_dict_reduced)
            sys.exit(1)

        optimizer.zero_grad()
        if scaler is not None:
            scaler.scale(losses).backward()
            scaler.step(optimizer)
            scaler.update()
        else:
            losses.backward()
            optimizer.step()

        if lr_scheduler is not None:
            lr_scheduler.step()

        metric_logger.update(loss=losses_reduced, **loss_dict_reduced)
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])

    return metric_logger

def _get_iou_types(model):
    model_without_ddp = model
    if isinstance(model, torch.nn.parallel.DistributedDataParallel):
        model_without_ddp = model.module
    iou_types = ["bbox"]
    if isinstance(model_without_ddp, torchvision.models.detection.MaskRCNN):
        iou_types.append("segm")
    if isinstance(model_without_ddp, torchvision.models.detection.KeypointRCNN):
        iou_types.append("keypoints")
    return iou_types

# @torch.inference_mode()
def evaluate(model, data_loader, device):
    n_threads = torch.get_num_threads()
    # FIXME remove this and make paste_masks_in_image run on the GPU
    torch.set_num_threads(1)
    cpu_device = torch.device("cpu")
    model.eval()
    metric_logger = MetricLogger(delimiter=" | ")
    header = "Test jarayoni: "

    coco = get_coco_api_from_dataset(data_loader.dataset)
    iou_types = _get_iou_types(model)
    coco_evaluator = CocoEvaluator(coco, iou_types)

    for images, targets in metric_logger.log_every(data_loader, 100, header):

        images = list(img.to(device) for img in images)

        if torch.cuda.is_available(): torch.cuda.synchronize()
        model_time = time.time()
        outputs = model(images)      

        outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
        model_time = time.time() - model_time

        res = {target["image_id"].item(): output for target, output in zip(targets, outputs)}
        evaluator_time = time.time()
        coco_evaluator.update(res)
        evaluator_time = time.time() - evaluator_time
        metric_logger.update(model_vaqt=model_time, baholash_vaqt=evaluator_time)

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print(f"\nTest jarayoni statistikasi: {metric_logger}\n")
    coco_evaluator.synchronize_between_processes()

    # accumulate predictions from all images
    coco_evaluator.accumulate()
    coco_evaluator.summarize()
    torch.set_num_threads(n_threads)

    return coco_evaluator

class SmoothedValue:
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
            median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
        )

class MetricLogger:
    def __init__(self, delimiter=" | "):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append(f"{name}: {str(meter)}")
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None):
        i = 0
        if not header:
            header = ""
        start_time = time.time()
        end = time.time()
        iter_time = SmoothedValue(fmt="{avg:.4f}")
        data_time = SmoothedValue(fmt="{avg:.4f}")
        space_fmt = ":" + str(len(str(len(iterable)))) + "d"
        if torch.cuda.is_available():
            init_msg = "".join(
                [
                    f"\n{header}",
                    "{1}ta batchdan {0" + space_fmt +"}-sining natijasi: \n",
                ]
            )

            log_msg = self.delimiter.join(
                [
                    "{meters}",
                    "vaqt -> {time}",
                ]
            )
        else:
            log_msg = self.delimiter.join(
                [header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "vaqt: {vaqt}", "data: {data}"]
            )
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % print_freq == 0 or i == len(iterable) - 1:
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                if torch.cuda.is_available():
                    print(init_msg.format(i + 1, len(iterable)))
                    print(
                        log_msg.format(
                            meters=str(self),
                            time=str(iter_time),
                        )
                    )
                else:
                    print(
                        log_msg.format(
                            i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
                        )
                    )
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print(f"{header} umumiy vaqt: {total_time_str} ({total_time / len(iterable):.4f} s / rasm)")

def reduce_dict(input_dict, average=True):
    """
    Args:
        input_dict (dict): all the values will be reduced
        average (bool): whether to do average or sum
    Reduce the values in the dictionary from all processes so that all processes
    have the averaged results. Returns a dict with the same fields as
    input_dict, after reduction.
    """
    world_size = get_world_size()
    if world_size < 2:
        return input_dict
    with torch.inference_mode():
        names = []
        values = []
        # sort the keys so that they are consistent across processes
        for k in sorted(input_dict.keys()):
            names.append(k)
            values.append(input_dict[k])
        values = torch.stack(values, dim=0)
        dist.all_reduce(values)
        if average:
            values /= world_size
        reduced_dict = {k: v for k, v in zip(names, values)}
    return reduced_dict

def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()

def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True
Enter fullscreen mode Exit fullscreen mode

ขั้นตอนที่ 8 Train โมเดล

model_prefix = "road"
epochs = 15
save_model_path = "saved_models"
for epoch in range(epochs):
    # train for one epoch, printing every 10 iterations
    train_one_epoch(m, optimizer, tr_dl, device, epoch, print_freq = 10)
    # update the learning rate
    lr_scheduler.step()
    # evaluate on the test dataset
    evaluate(m, val_dl, device = device)

os.makedirs(f"{save_model_path}", exist_ok = True)
torch.save(m, f"{save_model_path}/{model_prefix}_best_model.pt")
print("Finish!")
Enter fullscreen mode Exit fullscreen mode

ผลที่ได้

Image description

  • สรุป การสร้าง Object Detection ด้วย PyTorch ซึ่งในตัวอย่างมีการ Train Model แค่ 15 epoch จึงเป็นกระบวนการที่มีประสิทธิภาพและยืดหยุ่น โดยการ Train ด้วยชุดข้อมูล COCO ช่วยเสริมสร้างความแม่นยำและการทำงานที่มีประสิทธิภาพในการตรวจจับวัตถุในภาพ

References
https://www.youtube.com/watch?v=PPpKlPYL95c
https://www.geeksforgeeks.org/implementation-of-a-cnn-based-image-classifier-using-pytorch/?ref=lbp

💖 💪 🙅 🚩
thanva_thanawat
Thanawat Srithongkul

Posted on April 17, 2024

Join Our Newsletter. No Spam, Only the good stuff.

Sign up to receive the latest update from our blog.

Related