Day 4 - Custom Metrics Instrumentation and Scraping using Prom Client

subham_nandi

Subham Nandi

Posted on October 27, 2024

Day 4 - Custom Metrics Instrumentation and Scraping using Prom Client

Monitoring Custom Metrics in Node.js with Prometheus on Kubernetes

Monitoring is an essential aspect of application maintenance, especially in a microservices environment. It ensures that developers and system administrators can track the health and performance of services. In this tutorial, we'll walk you through monitoring a simple Node.js microservice with custom metrics using Prometheus in a Kubernetes environment.

Overview

We will:

  1. Create a Node.js application with custom metrics using Prometheus.
  2. Deploy the application on a Kubernetes cluster.
  3. Install Prometheus and configure it to scrape custom metrics from our application.
  4. Visualize the data on Prometheus and set up an Alertmanager for notifications.

Prerequisites

  • Basic knowledge of Kubernetes and Node.js.
  • A working Kubernetes cluster (Minikube or any managed Kubernetes service).
  • Helm installed for managing Kubernetes packages.
  • kubectl configured to interact with your Kubernetes cluster.
  • A Node.js environment for creating and testing the application locally.

Step 1: Setting Up the Node.js Application with Custom Metrics

1.1 Create a Node.js Application

Start by setting up a simple Node.js application. Initialize the project with:

mkdir nodejs-metrics-app
cd nodejs-metrics-app
npm init -y
Enter fullscreen mode Exit fullscreen mode

Install the necessary dependencies:

npm install express prom-client
Enter fullscreen mode Exit fullscreen mode

1.2 Instrument Metrics with Prometheus Client

Create an index.js file:

const express = require('express');
const Prometheus = require('prom-client');

const app = express();
const PORT = process.env.PORT || 3000;

// Initialize the Prometheus registry
const register = new Prometheus.Registry();
Prometheus.collectDefaultMetrics({ register });

// Define custom metrics
const httpRequestCount = new Prometheus.Counter({
  name: 'http_request_total',
  help: 'Total number of HTTP requests',
  labelNames: ['method', 'route', 'status'],
});

const httpRequestDuration = new Prometheus.Histogram({
  name: 'http_request_duration_seconds',
  help: 'HTTP request duration in seconds',
  labelNames: ['method', 'route', 'status'],
  buckets: [0.1, 0.5, 1, 2, 5],
});

// Middleware to measure request duration
app.use((req, res, next) => {
  const end = httpRequestDuration.startTimer();
  res.on('finish', () => {
    httpRequestCount.inc({ method: req.method, route: req.path, status: res.statusCode });
    end({ method: req.method, route: req.path, status: res.statusCode });
  });
  next();
});

// Sample API endpoints
app.get('/health', (req, res) => {
  res.send('Service is running');
});

app.get('/crash', (req, res) => {
  process.exit(1); // Force the application to crash
});

// Expose metrics endpoint
app.get('/metrics', async (req, res) => {
  res.set('Content-Type', register.contentType);
  res.end(await register.metrics());
});

app.listen(PORT, () => {
  console.log(`App listening on port ${PORT}`);
});
Enter fullscreen mode Exit fullscreen mode

1.3 Test Locally

Start the application locally to ensure everything works:

node index.js
Enter fullscreen mode Exit fullscreen mode

Visit http://localhost:3000/metrics to see the Prometheus metrics output.

Step 2: Containerize the Application

Create a Dockerfile for the Node.js application:

# Use a Node.js base image
FROM node:14

# Create app directory
WORKDIR /app

# Install app dependencies
COPY package*.json ./
RUN npm install

# Bundle app source code
COPY . .

# Expose port
EXPOSE 3000

# Start the application
CMD ["node", "index.js"]
Enter fullscreen mode Exit fullscreen mode

Build and push the Docker image:

docker build -t your-dockerhub-username/nodejs-metrics-app .
docker push your-dockerhub-username/nodejs-metrics-app
Enter fullscreen mode Exit fullscreen mode

Step 3: Deploy the Application on Kubernetes

3.1 Create Kubernetes Manifests

Create a Kubernetes manifest file deployment.yaml to deploy the application:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nodejs-metrics-app
  namespace: dev
spec:
  replicas: 2
  selector:
    matchLabels:
      app: nodejs-metrics-app
  template:
    metadata:
      labels:
        app: nodejs-metrics-app
    spec:
      containers:
      - name: nodejs-metrics-container
        image: your-dockerhub-username/nodejs-metrics-app:latest
        ports:
        - containerPort: 3000
---
apiVersion: v1
kind: Service
metadata:
  name: nodejs-metrics-service
  namespace: dev
spec:
  type: LoadBalancer
  selector:
    app: nodejs-metrics-app
  ports:
  - protocol: TCP
    port: 80
    targetPort: 3000
Enter fullscreen mode Exit fullscreen mode

Apply the manifest:

kubectl create namespace dev
kubectl apply -f deployment.yaml
Enter fullscreen mode Exit fullscreen mode

3.2 Verify Deployment

Ensure the pods are running:

kubectl get pods -n dev
Enter fullscreen mode Exit fullscreen mode

Check the services:

kubectl get svc -n dev
Enter fullscreen mode Exit fullscreen mode

Step 4: Install Prometheus Using Helm

Install Prometheus using the Helm chart:

helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm repo update
helm install prometheus-stack prometheus-community/kube-prometheus-stack --namespace monitoring --create-namespace
Enter fullscreen mode Exit fullscreen mode

4.1 Expose Prometheus

Expose Prometheus for local access:

kubectl port-forward svc/prometheus-stack-kube-prometheus-prometheus -n monitoring 9090:9090
Enter fullscreen mode Exit fullscreen mode

Visit http://localhost:9090 to access the Prometheus UI.

Step 5: Configure Service Discovery for Custom Metrics

5.1 Create a ServiceMonitor for Prometheus

Create a service-monitor.yaml file:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: nodejs-metrics-monitor
  namespace: dev
spec:
  selector:
    matchLabels:
      app: nodejs-metrics-app
  endpoints:
  - port: 3000
    path: /metrics
    interval: 15s
Enter fullscreen mode Exit fullscreen mode

Apply the manifest:

kubectl apply -f service-monitor.yaml
Enter fullscreen mode Exit fullscreen mode

5.2 Verify Custom Metrics in Prometheus

Open Prometheus and query the custom metric http_request_total. You should now see data collected from your Node.js application.

Step 6: Set Up Alerting with Alertmanager

6.1 Configure Alertmanager

Create an Alertmanager configuration file:

apiVersion: v1
kind: Secret
metadata:
  name: alertmanager-config
  namespace: monitoring
stringData:
  alertmanager.yaml: |
    route:
      receiver: 'email-alert'
    receivers:
      - name: 'email-alert'
        email_configs:
        - to: 'your-email@example.com'
          from: 'alertmanager@example.com'
          smarthost: 'smtp.example.com:587'
          auth_username: 'your-email@example.com'
          auth_identity: 'your-email@example.com'
          auth_password: 'your-app-password'
Enter fullscreen mode Exit fullscreen mode

6.2 Deploy the Alertmanager Configuration

kubectl apply -f alertmanager-config.yaml
Enter fullscreen mode Exit fullscreen mode

6.3 Trigger an Alert

Force a crash in the application:

kubectl exec -it <nodejs-pod-name> -n dev -- curl http://localhost:3000/crash
Enter fullscreen mode Exit fullscreen mode

Check if you receive an alert notification.

Conclusion

In this tutorial, we covered the basics of instrumenting custom metrics in a Node.js application, deploying the application on Kubernetes, and setting up Prometheus to monitor those metrics. Additionally, we configured Alertmanager to receive notifications when something goes wrong. This setup can be further enhanced by integrating a visualization tool like Grafana and exploring advanced metrics.


💖 💪 🙅 🚩
subham_nandi
Subham Nandi

Posted on October 27, 2024

Join Our Newsletter. No Spam, Only the good stuff.

Sign up to receive the latest update from our blog.

Related