Denoising Images with Autoencoders: A Practical Guide Using MNIST Dataset- Part 2

sreeni5018

Seenivasa Ramadurai

Posted on November 1, 2024

Denoising Images with Autoencoders: A Practical Guide Using MNIST Dataset- Part 2

In recent years, deep learning techniques have gained immense popularity for image processing tasks, particularly in noise reduction and denoising. One of the most effective approaches for this is through the use of autoencoders. In this blog post, we’ll explore how to implement an autoencoder to denoise images from the MNIST dataset using TensorFlow and Keras.

Please refer the below link for part-1

https://dev.to/sreeni5018/exploring-autoencodersanomaly-detection-with-tensorflow-and-keras-using-the-mnist-dataset-1bdp

import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import mnist
import matplotlib.pyplot as plt

# Load and preprocess the MNIST data
(x_train, _), (x_test, _) = mnist.load_data()  # Load the dataset and ignore the labels
x_train = x_train.astype("float32") / 255.0  # Normalize the training images to the range [0, 1]
x_test = x_test.astype("float32") / 255.0    # Normalize the test images to the range [0, 1]

# Reshape the data to be (samples, 784)
x_train = x_train.reshape((-1, 28 * 28))  # Flatten images to vectors of size 784
x_test = x_test.reshape((-1, 28 * 28))    # Flatten test images to vectors of size 784

# Add noise to the data
def add_noise(data, noise_factor=0.5):
    """
    Add Gaussian noise to the data.

    Parameters:
    data (numpy.ndarray): Input data (images).
    noise_factor (float): The amount of noise to add.

    Returns:
    numpy.ndarray: Noisy data with pixel values clipped to [0, 1].
    """
    noise = np.random.normal(loc=0.0, scale=1.0, size=data.shape)  # Generate Gaussian noise
    noisy_data = data + noise_factor * noise  # Add noise to the original data
    return np.clip(noisy_data, 0., 1.)  # Ensure pixel values remain in [0, 1]

# Generate noisy training and test data
x_train_noisy = add_noise(x_train)  # Add noise to the training data
x_test_noisy = add_noise(x_test)    # Add noise to the test data

# Define the autoencoder model
input_img = layers.Input(shape=(x_train.shape[1],))  # Input layer with shape (784,)
# Encoder: progressively reduce dimensionality
encoded = layers.Dense(200, activation="relu")(input_img)  # First hidden layer with 200 neurons
encoded = layers.Dense(100, activation="relu")(encoded)    # Second hidden layer with 100 neurons
encoded = layers.Dense(50, activation="relu")(encoded)     # Third hidden layer with 50 neurons
bottleneck = layers.Dense(25, activation="relu")(encoded)  # Bottleneck layer with 25 neurons

# Decoder: progressively increase dimensionality to reconstruct the input
decoded = layers.Dense(50, activation="relu")(bottleneck)   # First hidden layer in decoder
decoded = layers.Dense(100, activation="relu")(decoded)     # Second hidden layer in decoder
decoded = layers.Dense(200, activation="relu")(decoded)     # Third hidden layer in decoder
decoded_output = layers.Dense(x_train.shape[1], activation="sigmoid")(decoded)  # Output layer with 784 neurons

# Create the autoencoder model
autoencoder = models.Model(input_img, decoded_output)  # Define the model with input and output
autoencoder.compile(optimizer="adam", loss="mse")      # Compile the model with Adam optimizer and MSE loss

# Print the model summary
print("Autoencoder Model Summary:")
autoencoder.summary()  # Display the model architecture

# Train the autoencoder
autoencoder.fit(x_train_noisy, x_train, epochs=40, batch_size=256, validation_data=(x_test_noisy, x_test))  
# Train the model with noisy images as inputs and original images as targets

# Evaluate the model by denoising the test images
denoised_images = autoencoder.predict(x_test_noisy)  # Use the trained model to denoise the test images

# Visualization of results
n = 10  # Number of images to display
plt.figure(figsize=(20, 6))

# Original Images
for i in range(n):
    # Display original images
    ax = plt.subplot(3, n, i + 1)  # Create a subplot for the original image
    plt.imshow(x_test[i].reshape(28, 28), cmap="gray")  # Display original image
    plt.title("Original Image")  # Set title for the subplot
    plt.axis("off")  # Hide axis

    # Display noisy images
    ax = plt.subplot(3, n, i + 1 + n)  # Create a subplot for the noisy image
    plt.imshow(x_test_noisy[i].reshape(28, 28), cmap="gray")  # Display noisy image
    plt.title("Noisy Image")  # Set title for the subplot
    plt.axis("off")  # Hide axis

    # Display denoised images
    ax = plt.subplot(3, n, i + 1 + 2 * n)  # Create a subplot for the denoised image
    plt.imshow(denoised_images[i].reshape(28, 28), cmap="gray")  # Display denoised image
    plt.title("Denoised Image")  # Set title for the subplot
    plt.axis("off")  # Hide axis

plt.tight_layout()  # Adjust layout to prevent overlap
plt.show()  # Display the plots

Enter fullscreen mode Exit fullscreen mode

Image description

Model training with 40 epochs

Image description

Finally, we visualize the results by plotting the original images, the noisy images, and the denoised images side by side. This gives us a clear comparison of how well our autoencoder has performed.

Image description

Conclusion
In this blog post, we demonstrated how to implement a denoising autoencoder using TensorFlow and Keras to reduce noise in images from the MNIST dataset. This approach can be applied to various image processing tasks, including image restoration and preprocessing for machine learning applications. With autoencoders, we can effectively enhance image quality and maintain essential features, making them a valuable tool in the realm of computer vision.

Thanks
Sreeni Ramadorai.

💖 💪 🙅 🚩
sreeni5018
Seenivasa Ramadurai

Posted on November 1, 2024

Join Our Newsletter. No Spam, Only the good stuff.

Sign up to receive the latest update from our blog.

Related