How to set up a perfect Python project
Nick Thapen
Posted on March 20, 2020
When starting a new Python project, it is tempting to just dive in and start coding. Spending a tiny amount of time to setup a project with the best tools will save immense time and lead to a happier coding experience.
In an ideal world, dependencies would be identical for all developers, code
would be perfectly formatted, common errors forbidden and everything would be
covered by tests. Additionally, all of these would ensured at each commit.
In this article I'll go through how to set up a project that does exactly that. You can either follow along with the steps or jump straight to generating a new project automatically by installing pipx and pipenv then generating a new project.
Let's create a new project directory:
mkdir best_practices
cd best_practices
Python command line tools with pipx
Pipx is a handy utility that allows quick installation of python command line tools. We'll be using it to install pipenv and cookiecutter.
python3 -m pip install --user pipx
python3 -m pipx ensurepath
Dependency management with pipenv
Pipenv automatically creates and manages a
virtualenv for your projects, as well as adding/removing packages from your
Pipfile as you install/uninstall packages. It also generates the ever-important
Pipfile.lock, which is used to produce deterministic builds.
Knowing that you and your teammates are using the same library versions is a huge confidence boost. Pipenv takes care of this and has gained massive traction in the last year or so.
pipx install pipenv
Code formatting with black and isort
Black formats our code:
Black is the uncompromising Python code formatter. By using it, you agree to cede control over minutiae of hand-formatting. In return, Black gives you speed, determinism, and freedom from pycodestyle nagging about formatting. You will save time and mental energy for more important matters.
Blackened code looks the same regardless of the project you're reading. Formatting becomes transparent after a while and you can focus on the content instead.
Black makes code review faster by producing the smallest diffs possible.
while isort sorts our imports:
isort your python imports for you so you don't have to.
isort is a Python utility / library to sort imports alphabetically, and automatically separated into sections.
Let's install them using pipenv as development dependencies so they don't clutter a deployment:
pipenv install black isort --dev
Black and isort have incompatible default options so we'll override isort to follow black's lead. Create a setup.cfg
file and add this config:
[isort]
multi_line_output=3
include_trailing_comma=True
force_grid_wrap=0
use_parentheses=True
line_length=88
We can run these tools with:
pipenv run black
pipenv run isort
Style enforcement with flake8
Flake8 ensures our code follows the standard python conventions as defined in PEP8. Install using pipenv:
pipenv install flake8 --dev
Just like isort it needs a little configuration to work well with black. Add this config to setup.cfg
:
[flake8]
ignore = E203, E266, E501, W503
max-line-length = 88
max-complexity = 18
select = B,C,E,F,W,T4
Now we can run flake8 with pipenv run flake8
.
Static types with mypy
Mypy is an optional static type checker for Python that aims to combine the benefits of dynamic (or "duck") typing and static typing. Mypy combines the expressive power and convenience of Python with a powerful type system and compile-time type checking. Mypy type checks standard Python programs; run them using any Python VM with basically no runtime overhead.
Having types in Python takes a little getting used to but the benefits are substantial. From the website:
- Static typing can make programs easier to understand and maintain
- Static typing can help you find bugs earlier and with less testing and debugging
- Static typing can help you find difficult-to-find bugs before your code goes into production
pipenv install mypy --dev
Mypy by default will recursively check all imports for type annotations which leads to errors when libraries do not include these annotations.
We need to configure mypy to run only on our code and to ignore any errors for imports without type annotations.
We are assuming that our code lives in the best_practices
package for the following config. Add this to setup.cfg
:
[mypy]
files=best_practices,test
ignore_missing_imports=true
Now we can run mypy with:
pipenv run mypy
Here's a useful cheat sheet for using it.
Testing with pytest and pytest-cov
Writing tests with pytest is incredibly easy and removing any friction to writing tests means we will write more of them!
pipenv install pytest pytest-cov --dev
Here's a simple example from the pytest website:
# content of test_sample.py
def inc(x):
return x + 1
def test_answer():
assert inc(3) == 5
To execute it:
$ pipenv run pytest
=========================== test session starts ============================
platform linux -- Python 3.x.y, pytest-5.x.y, py-1.x.y, pluggy-0.x.y
cachedir: $PYTHON_PREFIX/.pytest_cache
rootdir: $REGENDOC_TMPDIR
collected 1 item
test_sample.py F [100%]
================================= FAILURES =================================
_______________________________ test_answer ________________________________
def test_answer():
> assert inc(3) == 5
E assert 4 == 5
E + where 4 = inc(3)
test_sample.py:6: AssertionError
========================= 1 failed in 0.12 seconds =========================
All our tests should go in the test
directory so add this config to setup.cfg
:
[tool:pytest]
testpaths=test
We also want to check how much of our code is covered by tests. Create a new file .coveragerc
to only return coverage statistics for our application code, again we are assuming our application code lives in the best_practices
module:
[run]
source = best_practices
[report]
exclude_lines =
# Have to re-enable the standard pragma
pragma: no cover
# Don't complain about missing debug-only code:
def __repr__
if self\.debug
# Don't complain if tests don't hit defensive assertion code:
raise AssertionError
raise NotImplementedError
# Don't complain if non-runnable code isn't run:
if 0:
if __name__ == .__main__.:
We can now run our tests and report coverage with
pipenv run pytest --cov --cov-fail-under=100
This will fail if our test coverage of the application code is less than 100%.
Git hooks with pre-commit
Git hooks allow you to run scripts any time you want to commit or push. This lets us run all of our linting and tests automatically every time we commit/push. pre‑commit allows easy configuration of these hooks:
Git hook scripts are useful for identifying simple issues before submission to code review. We run our hooks on every commit to automatically point out issues in code such as missing semicolons, trailing whitespace, and debug statements. By pointing these issues out before code review, this allows a code reviewer to focus on the architecture of a change while not wasting time with trivial style nitpicks.
Here we configure all of the above tools to run on any changed python files on committing, and also to run pytest coverage only when pushing as it can be slow. Create a new file .pre-commit-config.yaml
:
repos:
- repo: local
hooks:
- id: isort
name: isort
stages: [commit]
language: system
entry: pipenv run isort
types: [python]
- id: black
name: black
stages: [commit]
language: system
entry: pipenv run black
types: [python]
- id: flake8
name: flake8
stages: [commit]
language: system
entry: pipenv run flake8
types: [python]
exclude: setup.py
- id: mypy
name: mypy
stages: [commit]
language: system
entry: pipenv run mypy
types: [python]
pass_filenames: false
- id: pytest
name: pytest
stages: [commit]
language: system
entry: pipenv run pytest
types: [python]
- id: pytest-cov
name: pytest
stages: [push]
language: system
entry: pipenv run pytest --cov --cov-fail-under=100
types: [python]
pass_filenames: false
If you ever need to skip these hooks you can run git commit --no-verify
or git push --no-verify
Generate a project using cookiecutter
Now we've seen what an ideal project contains, we can turn this into a template to generate a new project with a single command:
pipx run cookiecutter gh:sourcery-ai/python-best-practices-cookiecutter
Fill in the project name and repo name and your project will be generated for you.
To finish setting up, follow these steps:
# Enter project directory
cd <repo_name>
# Initialise git repo
git init
# Install dependencies
pipenv install --dev
# Setup pre-commit and pre-push hooks
pipenv run pre-commit install -t pre-commit
pipenv run pre-commit install -t pre-push
The template project contains a very simple Python file and test to try the tools out on. Once you're happy with the code you can then do your first git commit
and all the hooks will be run.
Editor Integration
While it is great to know that the standard of code on our project will always be maintained at the highest level when committing code, it is somewhat frustrating to find out any issues after we think the code changes have all been done. It is much better to get the issues displayed in real-time.
Spend some time to make sure these commands are run by your code editor when saving a file. Having instant feedback means you can quickly fixup any minor issues introduced while the code is fresh in the mind.
Personally I use some excellent Vim plugins to accomplish this:
- ale runs flake8 in real-time, and runs black, isort and mypy on file save
- vim-test with projectionist integration runs pytest on file save
Posted on March 20, 2020
Join Our Newsletter. No Spam, Only the good stuff.
Sign up to receive the latest update from our blog.