Running PMML models in Erlang using NIF and CPP
Shubham Kumar
Posted on October 15, 2023
Introduction
Erlang is a great language for building concurrent systems that are fault-tolerant and scalable. But it lacks some of the libraries that are available in other languages. One such example is using PMML
files for machine learning models. At the time of writing, Erlang doesn't have a library for parsing PMML
files. This is a problem for people who want to use Erlang for building machine learning systems. Here I'll show how to use C++
to build a NIF
that can be used in Erlang to parse PMML
files. More specifically, I'll use the cPMML library to build a NIF
that can be used in Erlang.
Erlang NIF
Erlang NIF provides you a way to define your functions in C/C++
and call them in Erlang
code natively. The C/C++
program is compiled to generate a library file that can be used in Erlang. This library is dynamically linked to the Erlang VM and is the fastest way of calling the C/C++
code from Erlang
. The disadvantage of the approach is that if the C/C++
code crashes, it will crash the Erlang VM. And you will need to maintain the C/C++
code along with the Erlang
code.
Prerequisites
cPMML
library requires a version of C++
that supports C++11
standard. Also, make sure you have the required header files on the Erlang
side.
You can find them on Mac OS or Linux using the find function. If the header files are located in multiple locations, use the Celler
one.
find / -name erl_nif.h | grep erl_nif.h
Hello Nif program
C/C++ code
Header file
You need to include the below header file to use the Erlang
functionalities. On a lower level, it defines the data structures and environment that Erlang
provides to the C/C++
code.
#include <erl_nif.h>
Function Definition
These functions are called from Erlang
code. They must follow a specific structure and return a specific type of value. Here, we will define a function that will return a "Hello, World!" string.
ERL_NIF_TERM
is the return type of the function. It is an interface for various return types like binary
, tuple
, list
, atom
, etc. Meaning, that you can return any of these types from the function.
ErlNifEnv
is the pointer to the Erlang environment. It provides you access to various Erlang
functionalities like memory management, exception handling and Erlang
term creation. For us, it will help in creating Erlang Terms like string
.enif_make_string
is the function that will create a string from the C/C++
code.
The argc
and argv
provide the number of arguments and the arguments passed to the function from Erlang
code.
Below is the function definition for hello world
.
static ERL_NIF_TERM hello_world(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) {
return enif_make_string(env, "Hello, World!", ERL_NIF_LATIN1);
}
Export functions
You need to specify the functions that you want to export to the Erlang
code. The structure is a list of ErlNifFunc
objects. Each object has the name of the function that Erlang sees, the number of arguments and the function pointer.
static ErlNifFunc nif_funcs[] = {
{"hello_world", 0, hello_world}
};
To initialize the NIF
library, you need to call the ERL_NIF_INIT
function. This takes in the name of your Erlang
module and the exported functions.
Let's call our Erlang
module hello_nif
.
ERL_NIF_INIT(hello_nif, nif_funcs, NULL, NULL, NULL, NULL)
Final code
extern "C" {
#include <erl_nif.h>
static ERL_NIF_TERM hello_world(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) {
return enif_make_string(env, "Hello, World!", ERL_NIF_LATIN1);
}
static ErlNifFunc nif_funcs[] = {
{"hello_world", 0, hello_world}
};
}
ERL_NIF_INIT(hello_nif, nif_funcs, NULL, NULL, NULL, NULL);
Erlang code
Erlang module
We will name our Erlang
module hello_nif.erl
.
-module(hello_nif).
Define your NIF functions
This specifies the functions that are exported from the C/C++
code.
-export([hello_world/0]).
-nifs([hello_world/0]).
Load the library on module load
If you compiled your C/C++
code to a library named hello_nif.so
, you can load it using the load_nif
function.
-on_load(init/0).
init() ->
ok = erlang:load_nif("./hello_nif", 0).
Fallback function
The C/C++
code can crash and you need to handle that in the Erlang
code. These functions will run when the C/C++
code crashes. You should name each of these functions with the same name in the C/C++
code.
hello_world() ->
exit(nif_library_not_loaded).
Final code
-module(hello_nif).
-nifs([hello_world/0]).
-on_load(init/0).
init() ->
ok = erlang:load_nif("./hello_nif", 0).
hello_world() ->
exit(nif_library_not_loaded).
Compiling and Running
To compile the C/C++
code you can use gcc
.
Mac OS
gcc -o hello_nif.so hello.c -I /usr/local/lib/erlang/erts-13.2.2.2/include/ -bundle -bundle_loader /usr/local/lib/erlang/erts-13.2.2.2/bin/beam.smp
Linux
gcc -o hello_nif.so hello.c -I /usr/lib/erlang/erts-13.2.2.2/include -shared -fpic
On Erlng, you can call the hello_world
function.
> c(hello_nif).
> hello_nif:hello_world().
"Hello, World!"
cPMML NIF
We saw how to create a simple NIF
that returns a string. Now, let's create a NIF
that can take input and run prediction using a PMML
model file. For this, we will use the same model file we created in the previous post.
We have a PMML model for linear regression, y = 2x + 1
and we want to predict the value of y
for a given value of x
. Keeping it short, we will expose a function called, predict
that will take the input and return the output.
C/C++ code
Assuming you can compile cPMML
files as described in the previous post.
Header files
#include <iostream>
#include <vector>
#include <string>
#include <map>
#include "cPMML.h"
using namespace std;
PMML Parser class
We want to load the model once and use it for multiple predictions. For this, let's create a class that will load the model and call predictions on it. We will maintain only one instance of this class and use it for all the predictions.
class PmmlModelParser {
private:
cpmml::Model model;
public:
PmmlModelParser(const string& modelname) {
model = cpmml::Model(modelname);
}
string predict(const unordered_map<string, string>& x_input) {
return model.predict(x_input);
}
};
// Global variable
PmmlModelParser *pmmlModelParser = nullptr;
NIF implementation
We will create two functions, init
and predict
. The init
function will take the PMML
file as input and load it. The predict
function will take the input and return the output.
The below code describes the structure of the NIF
functions.
extern "C" {
#include <erl_nif.h>
static ERL_NIF_TERM init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) {}
static ERL_NIF_TERM predict(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) {}
static ErlNifFunc nif_funcs[] = {
{"init", 1, init},
{"evaluate", 1, predict}
};
}
ERL_NIF_INIT(lr_model, nif_funcs, NULL, NULL, NULL, NULL)
init function
The init
function will take the PMML
file as input and load it. We will use the enif_inspect_binary
function to get the PMML
file as a binary. Then we will convert it to a string and pass it to the PmmlModelParser
class.
static ERL_NIF_TERM init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) {
ErlNifBinary input_bin;
if (!enif_inspect_binary(env, argv[0], &input_bin)) {
return enif_make_badarg(env);
}
string input(reinterpret_cast<char*>(input_bin.data), input_bin.size);
pmmlModelParser = new PmmlModelParser(input);
return enif_make_atom(env, "ok");
}
predict function
The predict
function will take the input and return the output. The input will be a string and the output will be a string on the Erlang side.
But on the C/C++
side, we will convert the input to a map and pass it to the PmmlModelParser
class because cPMML
library expects a map as input. Don't get intimidated by the code below, it's just converting the Erlang
map to a C++
map by iterating over all the keys and value pairs.
For prediction, we will need a map with the key as X
and value as the input.
I could have just used a binary input as X and converted it to a string on the
C/C++
side. But, to make this more general, I am converting theErlang
map to aC++
map. Now this can be used for any PMML file and not just a specific one.
static ERL_NIF_TERM predict(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]) {
unordered_map<std::string, std::string> cpp_map;
if (!enif_is_map(env, argv[0]))
{
return enif_make_badarg(env);
}
ErlNifMapIterator iter;
if (enif_map_iterator_create(env, argv[0], &iter, ERL_NIF_MAP_ITERATOR_FIRST))
{
do
{
ERL_NIF_TERM key, value;
if (enif_map_iterator_get_pair(env, &iter, &key, &value))
{
ErlNifBinary key_bin, value_bin;
if (enif_map_iterator_get_pair(env, &iter, &key, &value))
{
char key_str[64], value_str[64];
if (enif_get_string(env, key, key_str, sizeof(key_str), ERL_NIF_LATIN1) &&
enif_get_string(env, value, value_str, sizeof(value_str), ERL_NIF_LATIN1))
{
cpp_map[key_str] = value_str;
}
}
}
} while (enif_map_iterator_next(env, &iter));
enif_map_iterator_destroy(env, &iter);
}
string ret = pmmlModelParser->predict(cpp_map);
return enif_make_string(env, ret.c_str(), ERL_NIF_LATIN1);
}
Erlang code
We will name our Erlang
module lr_model.erl
.
-module(lr_model).
-export([init/1, evaluate/1]).
-nifs([init/1, evaluate/1]).
-on_load(init/0).
init() ->
ok = erlang:load_nif("./lr_model", 0).
init(PmmlFile) ->
exit(problem_loading_nif).
evaluate(Input) ->
exit(problem_loading_nif).
Compiling and Running
Compiling the C/C++
code will now take an extra parameter to include cPMML
library. As the model is predicting the values for y = 2x + 1
, we should get ~3
for x = 1
and ~1
for x = 0
.
g++ -std=c++11 library.cpp \
-o lr_model.so \
-lcPMML \
-I /usr/local/lib/erlang/erts-13.2.2.2/include/ \
-bundle \
-bundle_loader /usr/local/lib/erlang/erts-13.2.2.2/bin/beam.smp
> c(lr_model).
> lr_model:init(<<"./lr_model.pmml">>).
> lr_model:evaluate(#{"X"=>"0"}).
"0.967265"
> lr_model:evaluate(#{"X"=>"1"}).
"3.007469"
Conclusion
In this blog, we saw how to use C/C++
libraries in Erlang
code. We used a PMML file of a linear regression model to predict the values of y = 2x + 1
for a given value of x
in Erlang
where the code was implemented in C++. We saw how to use the cPMML
library to parse the PMML
file and use it for predictions.
Posted on October 15, 2023
Join Our Newsletter. No Spam, Only the good stuff.
Sign up to receive the latest update from our blog.