Ruairí O'Brien
Posted on January 31, 2021
The Problem
Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers.
If such an arrangement is not possible, it must rearrange it as the lowest possible order (i.e., sorted in ascending order).
The replacement must be in place and use only constant extra memory.
Example 1:
Input: nums = [1,2,3]
Output: [1,3,2]
Example 2:
Input: nums = [3,2,1]
Output: [1,2,3]
Example 3:
Input: nums = [1,1,5]
Output: [1,5,1]
Example 4:
Input: nums = [1]
Output: [1]
Constraints:
1 <= nums.length <= 100
0 <= nums[i] <= 100
Tests
import pytest
from .Day31_NextPermutation import Solution
s = Solution()
@pytest.mark.parametrize(
"nums,expected",
[
([1, 2, 3], [1, 3, 2]),
([3, 2, 1], [1, 2, 3]),
([1, 1, 5], [1, 5, 1]),
([1], [1]),
],
)
def test_next_permutation(nums, expected):
s.nextPermutation(nums)
assert nums == expected
Solution
from typing import List
class Solution:
def nextPermutation(self, nums: List[int]) -> None:
"""
Do not return anything, modify nums in-place instead.
"""
i = len(nums) - 2
while i >= 0 and nums[i + 1] <= nums[i]:
i -= 1
if i >= 0:
j = len(nums) - 1
while j >= 0 and nums[j] <= nums[i]:
j -= 1
nums[i], nums[j] = nums[j], nums[i]
k = len(nums) - 1
while i < k:
i += 1
nums[i], nums[k] = nums[k], nums[i]
k -= 1
Analysis
💖 💪 🙅 🚩
Ruairí O'Brien
Posted on January 31, 2021
Join Our Newsletter. No Spam, Only the good stuff.
Sign up to receive the latest update from our blog.