Task-based asynchronous Pattern and Composition (aka Task Combinators)

nikiforovall

Oleksii Nikiforov

Posted on February 27, 2021

Task-based asynchronous Pattern and Composition (aka Task Combinators)

TL;DR

Concurrency with TPL is fairly simple. In this blog post, I will reiterate over fundamentals and share with you some common patterns that you could use to compose your solutions. This blog post is focused on the concurrent processing of a collection of tasks and possible semantics that could be considered during the design of a solution.

Examples and source code can be found here: nikiforovall.blog.examples/tap-composition


Part I: Fundamentals

The Task class provides a life cycle for asynchronous operations, and that cycle is represented by the TaskStatus enumeration. Exceptions occurring during the execution of an asynchronous method are assigned to the returned Task. If the cancellation request is honored such that work is ended prematurely, the Task returned from the TAP method will end in the TaskStatus.Canceled state. Finally, await operator unwraps the result of executing depending on TaskStatus.

Built-in task combinators: Task.Run, Task.FromResult, Task.WhenAll, Task.WhenAny, Task.Delay.

Task.WhenAll & Task.WhenAny

Task.WhenAll returns a brand-new Task. It represents the final result of batch execution. If a cancellation (or exception) happens during Task.WhenAll the result will be in TaskStatus.Canceled (TaskStatus.Faulted), but other tasks are not terminated.

The Task.WhenAny is used to asynchronously wait on multiple asynchronous operations represented as Tasks, asynchronously waiting for just one of them to complete. Unlike Task.WhenAll, which in the case of successful completion of all tasks returns a list of their unwrapped results, Task.WhenAny returns the Task that completed.

I suggest you investigate the behavior of "Appendix - Task.WhenAll" and "Appendix - Task.WhenAny" (down below) by exploring Unit Tests, so you understand how it behaves in certain scenarios.

Part II: Combinators

Let's compare processing algorithms by the following qualities:

  • Order of processing. Indicates how tasks are scheduled and executed relative to each other.
  • Process as Complete. Describes how and when the results are processed.
  • Throttled. Possibility to control the amount of workload at a given point in time.
  • Batch Cancellation. Possibility to cancel other tasks in case of cancellation request.
  • Interleaving. Isolated result processing.

Vanilla Task.WhenAll

WhenTask.WhenAll is used on a collection of tasks, all tasks are run to completion, i.e.: Task.IsCompleted = true. Results could be unwrapped from Task<TResult[]>.

Name Order of processing Process as Complete Throttled Batch Cancellation Interleaving
Task.WhenAll Concurrent ⭐ false false Pass cancellation token to each task N/A, results are aggregated and it is up to implementor how to process them

E.g.:

[Fact]
public async Task WhenAll_Result_Unwrapped()
{
    var job1 = RunJob(100, 1);
    var job2 = RunJob(300, 2);
    var whenAllTask = Task.WhenAll(job1, job2);
    var results = await whenAllTask;

    Assert.Equal(new int[] { 1, 2 }, results);
    Assert.True(whenAllTask.IsCompletedSuccessfully);
    Assert.Equal(TaskStatus.RanToCompletion, whenAllTask.Status);
}
Enter fullscreen mode Exit fullscreen mode

Cancellation variation:

[Fact]
public async Task WhenAll_SharedCancellationToken_AllCancelled()
{
    var cancellationTokenSource = new CancellationTokenSource(50);
    var t = cancellationTokenSource.Token;
    var job1 = RunJob(100, 1, t);
    var job2 = RunJob(150, 2, t);
    var job3 = RunJob(200, 3, t);
    List<Task> batch = new() { job1, job2, job3 };

    var whenAllTask = Task.WhenAll(batch);
    try
    { await whenAllTask; }
    catch { };

    Assert.All(batch, t => Assert.True(t.IsCanceled));
}
Enter fullscreen mode Exit fullscreen mode

Sequential ForEachAsync

Very simple implementation, just to demonstrate the different sides of the problem.

Name Order of processing Process as Complete Throttled Batch Cancellation Interleaving
SequentialBlockingForEachAsync Sequential false, sequential nature of processing impedes this true, not possible to control concurrency level N/A, easy to add on demand true
public static class SequentialBlockingForEachAsync
{
    public static async Task ForEachAsync<TResult, TSource>(
        this IEnumerable<TSource> list,
        Func<TSource, Task<TResult>> taskSelector,
        Action<TSource, TResult> resultProcessor)
    {
        foreach (var value in list)
        {
            resultProcessor(value, await taskSelector(value));
        }
    }
}
Enter fullscreen mode Exit fullscreen mode

💡 Note, you can change the parameter resultProcessor to run continuation or adjust to your needs.

Run the code:

private static IEnumerable<int> GenerateData()
{
    yield return 3;
    yield return 2;
    yield return 1;
}
[Benchmark]
public async Task SequentialBlocking() =>
    await GenerateData().ForEachAsync(async i =>
        {
            await Task.Delay(i * 100);
            return i;
        }, Empty);

private static void Empty<T>(T source, T result) { }

// |             Method |     Mean |   Error |  StdDev |
// |------------------- |---------:|--------:|--------:|
// | SequentialBlocking | 600.8 ms | 0.19 ms | 0.18 ms |
Enter fullscreen mode Exit fullscreen mode

Concurrent Interleaved ForEachAsync

The goal of this implementation is to achieve the maximum concurrency, but process results separate from each other:

Can be described as following: (ref)

  • For each element in an enumerable, run a function that returns a Task{TResult} to represent the completion of processing that element. All of these functions may run asynchronously concurrently.

  • As each task completes, run a second processing action over the results. All of these actions must be run sequentially, but order doesn’t matter.

Name Order of processing Process as Complete Throttled Batch Cancellation Interleaving
ConcurrentInterleavedForEachAsync Concurrent ⭐ true false N/A, easy to add on demand true
public static class ConcurrentIsolatedForEachAsync
{
    public static Task ForEachAsync<TSource, TResult>(
        this IEnumerable<TSource> source,
        Func<TSource, Task<TResult>> taskSelector, Action<TSource, TResult> resultProcessor)
    {
        SemaphoreSlim oneAtATime = new(initialCount: 1, maxCount: 1);
        return Task.WhenAll(
            from item in source
            select ProcessAsync(item, taskSelector, resultProcessor, oneAtATime));
    }

    private static async Task ProcessAsync<TSource, TResult>(
        TSource item,
        Func<TSource, Task<TResult>> taskSelector, Action<TSource, TResult> resultProcessor,
        SemaphoreSlim oneAtATime)
    {
        TResult result = await taskSelector(item);
        await oneAtATime.WaitAsync();
        try
        { resultProcessor(item, result); }
        finally { oneAtATime.Release(); }
    }
}
Enter fullscreen mode Exit fullscreen mode

💡 Note, you can change the parameter resultProcessor to run continuation or adjust to your needs.

Run the code:

private static IEnumerable<int> GenerateData()
{
    yield return 3;
    yield return 2;
    yield return 1;
}
[Benchmark]
public async Task ConcurrentIsolated() =>
    await GenerateData().ForEachAsync(async i =>
        {
            await Task.Delay(i * 100);
            return i;
        }, Empty);

private static void Empty<T>(T source, T result) { }

// |             Method |     Mean |   Error |  StdDev |
// |------------------- |---------:|--------:|--------:|
// | ConcurrentIsolated | 299.1 ms | 1.42 ms | 1.26 ms |
Enter fullscreen mode Exit fullscreen mode

Concurrent Interleaved Combinator

For those who don't like working with lambdas and ForEach LINQ operator. Personally, I really like this approach because it produces better stack traces.

Name Order of processing Process as Complete Throttled Batch Cancellation Interleaving
ConcurrentInterleavedCombinator Concurrent ⭐ true false N/A, easy to add on demand true
public static class ConcurrentInterleavedCombinator
{
    public static Task<Task<T>>[] Interleaved<T>(IEnumerable<Task<T>> tasks)
    {
        var inputTasks = tasks.ToList();

        var buckets = new TaskCompletionSource<Task<T>>[inputTasks.Count];
        var results = new Task<Task<T>>[buckets.Length];
        for (var i = 0; i < buckets.Length; i++)
        {
            buckets[i] = new TaskCompletionSource<Task<T>>();
            results[i] = buckets[i].Task;
        }

        var nextTaskIndex = -1;
        void continuation(Task<T> completed)
        {
            var bucket = buckets[Interlocked.Increment(ref nextTaskIndex)];
            _ = bucket.TrySetResult(completed);
        }

        foreach (var inputTask in inputTasks)
        {
            _ = inputTask.ContinueWith(
                continuation,
                CancellationToken.None,
                TaskContinuationOptions.ExecuteSynchronously,
                TaskScheduler.Default);
        }

        return results;
    }
}
Enter fullscreen mode Exit fullscreen mode

Here, we create TaskCompletionSource<Task<T>> instances to represent the buckets, one bucket per each of the tasks that will eventually complete. Then, we hook up a continuation to each input task. This continuation will get the next available bucket and store the newly completed task into it. ref

Run the code:

private static IEnumerable<int> GenerateData()
{
    yield return 3;
    yield return 2;
    yield return 1;
}

[Benchmark]
public async Task ConcurrentInterleavedCombinator()
{
    var tasks = GenerateData().Select(async i =>
    {
        await Task.Delay(i * 100);
        return i;
    });

    foreach (var bucket in Interleaved(tasks))
    {
        var t = await bucket;
    }
}

// |                          Method |     Mean |   Error |  StdDev |
// |-------------------------------- |---------:|--------:|--------:|
// | ConcurrentInterleavedCombinator | 299.4 ms | 1.01 ms | 0.94 ms |
Enter fullscreen mode Exit fullscreen mode

Throttled Interleaved WhenAll

Before this, we didn't really have control over consumed resources. It is a common task to implement throttling, here is how you can do that.

Name Order of processing Process as Complete Throttled Batch Cancellation Interleaving
WhenAllThrottled Concurrent* true true N/A true
public static class WhenAllThrottledExtensions
{
    public static async Task WhenAllThrottled(this IEnumerable<Task> source, int throttled)
    {
        var tasks = new List<Task>();
        throttled--;
        foreach (var task in source)
        {
            if (tasks.Count == throttled)
            {
                var finishedTask = await Task.WhenAny(tasks);
                _ = tasks.Remove(finishedTask);
            }
            tasks.Add(task);
        }
        await Task.WhenAll(tasks);
    }
}
Enter fullscreen mode Exit fullscreen mode

For more details, please see corresponding Unit Tests: Appendix - RunWhenAllThrottled.

💡 This is a simplified version without result processing. Try to convert this snippet to ThrottledForEachAsync version.

Run the code:

private static IEnumerable<int> GenerateData()
{
    yield return 2;
    yield return 2;
    yield return 1;
    yield return 1;
}

[Benchmark]
public async Task ThrottledInterleaved() =>
    await GenerateData().Select(i => Task.Delay(i * 100)).WhenAllThrottled(2);

// |               Method |     Mean |   Error |  StdDev |
// |--------------------- |---------:|--------:|--------:|
// | ThrottledInterleaved | 300.6 ms | 0.06 ms | 0.05 ms |
Enter fullscreen mode Exit fullscreen mode

Throttled ControlDegreeOfParallelism ForEachAsync

You don't always need interleaving. Let's see the approach based on System.Collections.Concurrent.Partitioner.

It limits the number of operations that are able to run in parallel. One way to achieve that is to partition the input data set into N partitions, where N is the desired maximum degree of parallelism, and schedule a separate task to begin the execution for each partition. ref.

Name Order of processing Process as Complete Throttled Batch Cancellation Interleaving
ControlParallelismForEachAsync Concurrent* true true N/A false
public static class ControlParallelismForEachAsyncExtensions
{
    public static Task ForEachAsync<T>(this IEnumerable<T> source, int dop, Func<T, Task> body)
    {
        return Task.WhenAll(
            from partition in Partitioner.Create(source).GetPartitions(dop)
            select Task.Run(async delegate {
                using (partition)
                    while (partition.MoveNext())
                        await body(partition.Current);
        }));
    }
}
Enter fullscreen mode Exit fullscreen mode

Run the code:

private static IEnumerable<int> GenerateData()
{
    yield return 2;
    yield return 1;
    yield return 2;
    yield return 1;
}

[Benchmark]
public async Task ControlParallelismForEachAsync() =>
    await GenerateData().ForEachAsync(dop: 2, i => Task.Delay(i * 100));

// |                         Method |     Mean |   Error |  StdDev |
// |------------------------------- |---------:|--------:|--------:|
// | ControlParallelismForEachAsync | 300.5 ms | 0.86 ms | 0.76 ms |
Enter fullscreen mode Exit fullscreen mode

Summary

Here is the final comparison table:

Name Order of processing Process as Complete Throttled Batch Cancellation Interleaving
Task.WhenAll Concurrent ⭐ false false true N/A
SequentialBlockingForEachAsync Sequential false true* on demand true
ConcurrentInterleavedForEachAsync Concurrent ⭐ true false on demand true
ConcurrentInterleavedCombinator Concurrent ⭐ true false on demand true
WhenAllThrottled Concurrent* true true N/A true
ControlParallelismForEachAsync Concurrent* true true N/A false

For now, you have enough knowledge to build more complex combinators to meet your requirements. I suggest you to check Reference for more information.

Hope you find this blog useful. Let me know what you think!


Appendix

Appendix - Example Tasks

public static async Task<int> RunJob(int milliseconds, int taskId, CancellationToken cancellationToken = default)
{
    await Task.Delay(milliseconds, cancellationToken);
    return taskId;
}

public static async Task ThrowJob(int milliseconds = 100)
{
    await Task.Delay(milliseconds);
    throw new InvalidOperationException(nameof(ThrowJob));
}

public static async Task CanceledJob(int milliseconds)
{
    var cancellationTokenSource = new CancellationTokenSource(milliseconds);
    await Task.Delay(milliseconds * 2, cancellationTokenSource.Token);
}
Enter fullscreen mode Exit fullscreen mode

Appendix - Task.WhenAll

[Fact]
public async Task WhenAll_Result_Unwrapped()
{
    var job1 = RunJob(100, 1);
    var job2 = RunJob(300, 2);
    Task<int[]> whenAllTask = Task.WhenAll(job1, job2);
    var results = await whenAllTask;

    Assert.Equal(new int[] { 1, 2 }, results);
    Assert.True(whenAllTask.IsCompletedSuccessfully);
    Assert.Equal(TaskStatus.RanToCompletion, whenAllTask.Status);
}

[Fact]
public void WhenAll_ExceptionsThrown_ExceptionsAggregated()
{
    var job1 = RunJob(100, 1);
    var job2 = ThrowJob(100);
    var job3 = ThrowJob(100);
    var job4 = RunJob(150, 4);
    AggregateException captured = default;
    var whenAllTask = Task.WhenAll(job1, job2, job3, job4);
    try
    { whenAllTask.Wait(); }
    catch (AggregateException ae) { captured = ae; };

    var whenAllException = whenAllTask.Exception;
    Assert.True(whenAllTask.IsFaulted);
    Assert.Equal(2, captured.Flatten().InnerExceptions.Count);
    // this is interesting
    Assert.NotSame(whenAllException, captured);
    Assert.Equal(whenAllException.Message, captured.Message);
}

[Fact]
public async Task WhenAll_ExceptionsThrown_ExceptionUnwrapped()
{
    var job1 = RunJob(100, 1);
    var job2 = ThrowJob(100);
    var job3 = ThrowJob(100);
    List<Task> batch = new() { job1, job2, job3 };
    InvalidOperationException captured = default;

    // t_all = whenall(t1, t2->throws, t3->throws)
    // t_all.Exception = AggregateException(t2.Exception, t3.Exception)
    // await t_all -> unwrap t_all.AggregateException -> select (t2 | t3) as t_selected
    // -> unwrap t_selected

    var whenAllTask = Task.WhenAll(batch);
    try
    { await whenAllTask; }
    catch (InvalidOperationException e) { captured = e; };

    Assert.True(whenAllTask.IsFaulted);
    Assert.Equal(TaskStatus.Faulted, whenAllTask.Status);
    Assert.Equal(TaskStatus.RanToCompletion, job1.Status);

    Assert.Equal(2, whenAllTask.Exception.Flatten().InnerExceptions.Count);
    var aggregatedException = Assert.IsType<AggregateException>(job2.Exception);
    Assert.Contains(captured, batch.Select(t => t.Exception?.InnerException));
}

[Fact]
public async Task WhenAll_ExceptionsThrown_UnwrappedChildTask()
{
    var job1 = RunJob(100, 1);
    var job2 = ThrowJob(100);
    List<Task> batch = new() { job1, job2 };
    InvalidOperationException captured1 = default;
    InvalidOperationException captured2 = default;

    var whenAllTask = Task.WhenAll(batch);
    try
    { await whenAllTask; }
    catch (InvalidOperationException e) { captured1 = e; };

    Assert.Equal(TaskStatus.Faulted, job2.Status);
    try
    { await job2; }
    catch (InvalidOperationException e) { captured2 = e; };

    Assert.Same(captured1, captured2);
    Assert.Equal(captured1.Message, captured2.Message);
}

[Fact]
public async Task WhenAll_CanceledTask_ExceptionThrown()
{
    var job1 = RunJob(100, 1);
    var job2 = CanceledJob(50);
    var job3 = CanceledJob(100);

    TaskCanceledException captured = null;

    var whenAllTask = Task.WhenAll(job1, job2, job3);
    try
    { await whenAllTask; }
    catch (TaskCanceledException e) { captured = e; };

    Assert.True(whenAllTask.IsCompleted && whenAllTask.IsCanceled);
    Assert.Equal(TaskStatus.Canceled, whenAllTask.Status);
    Assert.NotNull(captured);
    Assert.Null(whenAllTask.Exception);
    Assert.Null(job2.Exception);
    Assert.Null(job3.Exception);
    Assert.Equal(TaskStatus.Canceled, job2.Status);
    Assert.Equal(TaskStatus.Canceled, job3.Status);
}

[Fact]
public async Task WhenAll_CanceledAndFaulted_ExceptionOverCancellation()
{
    var job1 = RunJob(100, 1);
    var job2 = CanceledJob(50);
    var job3 = ThrowJob(100);

    var whenAllTask = Task.WhenAll(job1, job2, job3);
    try
    { await whenAllTask; }
    catch { };

    Assert.True(whenAllTask.IsFaulted);
    Assert.Equal(TaskStatus.Faulted, whenAllTask.Status);
    Assert.Equal(TaskStatus.RanToCompletion, job1.Status);
    Assert.Equal(TaskStatus.Canceled, job2.Status);
    Assert.Equal(TaskStatus.Faulted, job3.Status);
    Assert.IsType<InvalidOperationException>(whenAllTask.Exception.InnerException);
    Assert.Null(job2.Exception);
}

[Fact]
public async Task WhenAll_SharedCancellationToken_AllCancelled()
{
    var cancellationTokenSource = new CancellationTokenSource(50);
    var t = cancellationTokenSource.Token;
    var job1 = RunJob(100, 1, t);
    var job2 = RunJob(150, 2, t);
    var job3 = RunJob(200, 3, t);
    List<Task> batch = new() { job1, job2, job3 };

    var whenAllTask = Task.WhenAll(batch);
    try
    { await whenAllTask; }
    catch { };

    Assert.All(batch, t => Assert.True(t.IsCanceled));
}
Enter fullscreen mode Exit fullscreen mode

Appendix - Task.WhenAny

[Fact]
public async Task WhenAny_FirstCanceled()
{
    var job1 = RunJob(100, 1);
    var job2 = CanceledJob(50);
    var job3 = ThrowJob(70);
    List<Task> batch = new() { job1, job2, job3 };

    var waitForAnyTaskTask = Task.WhenAny(batch);
    var someTask = await waitForAnyTaskTask;

    Assert.Equal(TaskStatus.RanToCompletion, waitForAnyTaskTask.Status);
    Assert.Equal(TaskStatus.Canceled, someTask.Status);

    var someTask2 = await Task.WhenAny(batch);
    Assert.Same(someTask, someTask2);

    await Task.Delay(100); // let other tasks to complete
    var someTask3 = await Task.WhenAny(batch);

    Assert.NotSame(someTask, someTask3);
}
Enter fullscreen mode Exit fullscreen mode

Appendix - RunWhenAllThrottled

[Fact]
public async Task WhenAllThrottled_AllGood()
{
    var batch = Generate();
    var whenAllTask = batch.WhenAllThrottled(2);

    Assert.Equal(TaskStatus.WaitingForActivation, whenAllTask.Status);

    await whenAllTask;

    Assert.Equal(TaskStatus.RanToCompletion, whenAllTask.Status);

    static IEnumerable<Task> Generate()
    {
        yield return RunJob(100, 1);
        yield return RunJob(100, 2);
        yield return RunJob(100, 3);
        yield return RunJob(100, 4);
    }
}

[Fact]
public async Task WhenAllThrottled_ExceptionPropagated()
{
    var batch = Generate();
    var whenAllTask = batch.WhenAllThrottled(2);

    try
    { await whenAllTask; }
    catch { };

    Assert.Equal(TaskStatus.Faulted, whenAllTask.Status);

    static IEnumerable<Task> Generate()
    {
        yield return RunJob(100, 1);
        yield return ThrowJob(100);
        yield return RunJob(100, 3);
        yield return ThrowJob(100);
        yield return RunJob(100, 5);
    }
}

[Fact]
public async Task WhenAllThrottled_CancellationPropagated()
{
    var batch = Generate();
    var whenAllTask = batch.WhenAllThrottled(2);

    try
    { await whenAllTask; }
    catch { };

    Assert.Equal(TaskStatus.Canceled, whenAllTask.Status);

    static IEnumerable<Task> Generate()
    {
        yield return RunJob(100, 1);
        yield return CanceledJob(100);
        yield return RunJob(100, 3);
        yield return CanceledJob(100);
    }
}
Enter fullscreen mode Exit fullscreen mode

Reference

https://www.theurlist.com/tap-composition

💖 💪 🙅 🚩
nikiforovall
Oleksii Nikiforov

Posted on February 27, 2021

Join Our Newsletter. No Spam, Only the good stuff.

Sign up to receive the latest update from our blog.

Related