Matplotlib
muradalhasan
Posted on August 2, 2023
Matplotlib is a low level graph plotting and open source library was created by John D. Hunter.There are two types of method to creat a matplotlib plot functional and Object oriented method.
*To plot a function we need two array of ponits and plot() function then show() function
xpoints = [0, 6]
ypoints = [0, 120]
plt.plot(xpoints, ypoints)
plt.show()
and it will plot a graph according to x-ponits and y-pointes
- size(ms),marker_color(mec),ful_marker_color(mec),linestyle, linewidth teg of plot function
ypoints = np.array([3, 8, 1, 10])
plt.plot(ypoints, marker = 'o',color="hotpink", ms = 20,mec="yellow",mfc="blue",linestyle="--",linewidth=10)
plt.show()
marker function mark the satisfied points
color function gives color of lines
ms decide the size
mec decide the marker circle color
mfc decide marker color
linestyle decides linestyle
linewidth decides linewidth of line
*lebeling the axis and plot title
x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])
y = np.array([240, 250, 260, 270, 280, 290, 300, 310, 320, 330])
plt.plot(x, y)
plt.title("This is an example title",color='red',size=20,loc='right')
plt.xlabel("Average Pulse",color='blue',size=20,family='serif')
plt.ylabel("Calorie Burnage",color='yellow',size=20,family='serif')
plt.show()
*grid() functionn and it's attributes
plt.grid(axis='x')
plt.show()
plt.grid(color = 'green', linestyle = '--', linewidth = 0.5)
*subplot function
plt.subplot(2, 3, 1)
plt.plot(x,y)
2 in subplot means 2 rows and 3 column and position of that subplot is 1
*scatter diagram.we can plot multiple scatter in a single graph
x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
plt.scatter(x, y)
plt.scatter(x, y, color = 'hotpink')
#day two, the age and speed of 15 cars:
x = np.array([2,2,8,1,15,8,12,9,7,3,11,4,7,14,12])
y = np.array([100,105,84,105,90,99,90,95,94,100,79,112,91,80,85])
plt.scatter(x, y)
plt.scatter(x, y, color = '#88c999')
plt.show()
*sctter diagram attributes
x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
colors = np.array([0, 10, 20, 30, 40, 45, 50, 55, 60, 70, 80, 90, 100])
sizes = np.array([20,50,100,200,500,1000,60,90,10,300,600,800,75])
plt.scatter(x, y, c=colors, s=sizes, alpha=0.5, cmap='nipy_spectral')
plt.colorbar()
plt.show()
*Bar diagram
x = np.array(["A", "B", "C", "D"])
y = np.array([3, 8, 1, 10])
plt.bar(x,y)
plt.show()
*#to draw horiozontal bar
x = np.array(["A", "B", "C", "D"])
y = np.array([3, 8, 1, 10])
plt.barh(x, y)
plt.show()
*plt.bar() attribues
x = np.array(["A", "B", "C", "D"])
y = np.array([3, 8, 1, 10])
colors=np.array(["red","black","hotpink","yellow"])#we can add single color also customise color for every bar
plt.bar(x, y, color = colors)
plt.show()
width = 0.1 bar takes width size like color we can make all bars same size or customise size like color
*A histogram:
x = np.random.normal(170, 10, 250)
plt.hist(x,color="hotpink")
plt.show()
*pie chart and it's attributes
y = np.array([15, 10, 25, 50])
plt.pie(y)
plt.show()
The label parameter must be an array with one label for each wedge
y = np.array([35, 25, 25, 15])
mylabels = ["Apples", "Bananas", "Cherries", "Dates"]
plt.pie(y, labels = mylabels)
plt.show()
Pull the "Apples" wedge 0.2 from the center of the pie:
y = np.array([35, 25, 25, 15])
mylabels = ["Apples", "Bananas", "Cherries", "Dates"]
myexplode = [0.2, 0, 0, 0]
plt.pie(y, labels = mylabels, explode = myexplode)
plt.show()
# Add a shadow to the pie chart by setting the shadows parameter to True:
plt.pie(y, labels = mylabels, explode = myexplode, shadow = True)
plt.show()
Specify a new color for each wedge:
y = np.array([35, 25, 25, 15])
mylabels = ["Apples", "Bananas", "Cherries", "Dates"]
mycolors = ["black", "hotpink", "b", "#4CAF50"]
plt.pie(y, labels = mylabels, colors = mycolors)
plt.show()
To add a list of explanation for each wedge, use the legend() function:
y = np.array([35, 25, 25, 15])
mylabels = ["Apples", "Bananas", "Cherries", "Dates"]
plt.pie(y, labels = mylabels)
plt.legend()
# To add a header to the legend, add the title parameter to the legend function.
plt.legend(title = "Four Fruits:")
plt.show()
Posted on August 2, 2023
Join Our Newsletter. No Spam, Only the good stuff.
Sign up to receive the latest update from our blog.