Four Types of Bar Charts in Python - Based on Tabular Data
Luca Liu
Posted on March 15, 2024
Simple Bar Charts in Python Based on Tabular Data
import matplotlib.pyplot as plt
import pandas as pd
df = pd.DataFrame({'x': ['A', 'B', 'C', 'D', 'E'],
'y': [50, 30, 70, 80, 60]})
plt.bar(df['x'], df['y'], align='center', width=0.5, color='b', label='data')
plt.xlabel('X axis')
plt.ylabel('Y axis')
plt.title('Bar chart')
plt.legend()
plt.show()
Stacked bar chart in Python Based on Tabular Data
import matplotlib.pyplot as plt
import pandas as pd
df = pd.DataFrame({'x': ['A', 'B', 'C', 'D', 'E'],
'y1': [50, 30, 70, 80, 60],
'y2': [20, 40, 10, 50, 30]})
plt.bar(df['x'], df['y1'], align='center', width=0.5, color='b', label='Series 1')
plt.bar(df['x'], df['y2'], bottom=df['y1'], align='center', width=0.5, color='g', label='Series 2')
plt.xlabel('X axis')
plt.ylabel('Y axis')
plt.title('Stacked Bar Chart')
plt.legend()
plt.show()
Grouped bar chart based on Tabular Data in Python
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
# Prepare the data
df = pd.DataFrame({
'group': ['G1', 'G2', 'G3', 'G4', 'G5'],
'men_means': [20, 35, 30, 35, 27],
'women_means': [25, 32, 34, 20, 25]
})
ind = np.arange(len(df)) # x-axis position
width = 0.35 # width of each bar
# Plot the bar chart
fig, ax = plt.subplots()
rects1 = ax.bar(ind, df['men_means'], width, color='r')
rects2 = ax.bar(ind + width, df['women_means'], width, color='y')
# Add labels, legend, and axis labels
ax.set_xticks(ind + width / 2)
ax.set_xticklabels(df['group'])
ax.legend((rects1[0], rects2[0]), ('Men', 'Women'))
ax.set_xlabel('Groups')
ax.set_ylabel('Scores')
# Display the plot
plt.show()
Percent stacked bar chart based on Tabular Data in Python
import matplotlib.pyplot as plt
import pandas as pd
# Prepare the data
df = pd.DataFrame({
'x': ['Group 1', 'Group 2', 'Group 3', 'Group 4', 'Group 5'],
'y1': [10, 20, 30, 25, 30],
'y2': [20, 25, 30, 15, 20],
'y3': [30, 30, 25, 20, 10]
})
# calculate percentage
y_percent = df.iloc[:, 1:].div(df.iloc[:, 1:].sum(axis=1), axis=0) * 100
# plot the chart
fig, ax = plt.subplots()
ax.bar(df['x'], y_percent.iloc[:, 0], label='Series 1', color='r')
ax.bar(df['x'], y_percent.iloc[:, 1], bottom=y_percent.iloc[:, 0], label='Series 2', color='g')
ax.bar(df['x'], y_percent.iloc[:, 2], bottom=y_percent.iloc[:, :2].sum(axis=1), label='Series 3', color='b')
# Display the plot
plt.show()
Explore more
Thank you for taking the time to explore data-related insights with me. I appreciate your engagement.
π πͺ π
π©
Luca Liu
Posted on March 15, 2024
Join Our Newsletter. No Spam, Only the good stuff.
Sign up to receive the latest update from our blog.
Related
programming How to Use the Concat Function in Pandas for Horizontal or Vertical Table Concatenation
March 13, 2024