Self-Aligning Dish in Rust: GPS Example
Ian Ndeda
Posted on November 24, 2024
In this part of the series we'll receive raw data from the Neo-6m GPS module and process it to give us readable GPS coordinates.
Create a new directory at the same level as the src
directory. Inside this examples
directory create a gps.rs
file in which we'll write our example program. Copy the final code from the previous part into this file.
Table of Contents
Requirements
- 1 x Raspberry Pico board
- 1 x USB Cable type 2.0
- 1 x Neo-6M GPS Module
- 9 x M-M jumper wires
- 1 x HC-05 Bluetooth Module
- 2 x Mini Breadboards
- Serial Bluetooth App
Implementation
Connections
Connect the various modules to the Pico as shown below.
Raw GPS Data
Modify the super loop
by clearing it and checking if the GGA_ACQUIRED
flag is set. If so we shall read the received data.
loop {
cortex_m::interrupt::free(|cs| {
let mut uart_data = UARTDATA.borrow(cs).borrow_mut();
let mut buffer = BUFFER.borrow(cs).borrow_mut();
if GGA_ACQUIRED.borrow(cs).get() {
// Transmit raw data from gps
write!(serialbuf, "\n{}", buffer.as_mut().unwrap()).unwrap();
transmit_uart_data(
uart_data.as_mut().unwrap(),
&serialbuf);
GGA_ACQUIRED.borrow(cs).set(false);// clear the flag
}
});
cortex_m::asm::wfi();// wait for interrupt
}
Flash the program into the Pico.
cargo run --example gps
Open the Bluetooth terminal and flash the program into the Pico with the GPS module connected. We should see the raw GPS data on the terminal every second like so...
NB❗ You have to keep the GPS module where it can have a view of the sky. If indoors, please note that it may take a good while to lock onto satellites.
Continuous blinks every second is an indication of the module acquiring sufficient GPS data.
GPS Coordinates
We should now process the raw GPS data received into location coordinates. This can be achieved by implementing the below algorithm.
Before we implement the algorithm we need to create a Position
struct to hold the dish's coordinates.
struct Position {
lat: f32,
long: f32,
alt: f32,
}
impl Position {
fn new() -> Self {
Position {
lat: 0.,
long: 0.,
alt: 0.,
}
}
}
In the main
section we'll declare and initialize our position.
let mut position = Position::new();// gps position struct
We can now implement the parsing algorithm.
use heapless::Vec;
fn parse_gga(buffer: &mut String<164>, position: &mut Position) {
// Updates position of earth station
let v : Vec<&str, 84> = buffer.split_terminator(',').collect();
if !v[2].is_empty() {// latitude
let (x, y) = v[2].split_at(2);
let x_f32 = x.parse::<f32>().unwrap_or(0.);
let y_f32 = y.parse::<f32>().unwrap_or(0.);
if x_f32 + (y_f32/60.) != 0. {// if reading valid i.e. != 0 update position
position.lat = x_f32 + (y_f32/60.);
if v[3] == "S" {
position.lat *= -1.;
}
}
if !v[4].is_empty() {
let (a, b) = v[4].split_at(3);
let a_f32 = a.parse::<f32>().unwrap_or(0.);
let b_f32 = b.parse::<f32>().unwrap_or(0.);
if a_f32 + (b_f32/60.) != 0. {
position.long = a_f32 + (b_f32/60.);// if reading valid i.e. != 0 update position
if v[5] == "W" {
position.long *= -1.;
}
}
if !v[9].is_empty() {
let c = v[9];
position.alt = match c.parse::<f32>() {
Ok(c) => {
//Put LED indicating valid GPS data ON
//unsafe { *SIO_GPIO_OUT |= 1 << 25 };
//sio.gpio_out.modify(|r, w| unsafe { w.bits(r.gpio_out().bits() | 1 << 25)});
c
},
Err(_) => position.lat,// replace w/ last position
};
}
}
}
}
Update the main loop
to update and transmit GPS coordinates via Serial Bluetooth App. Add the following code below the one from the previous section.
// update the coordinates from the nmea sentence
parse_gga(buffer.as_mut().unwrap(), &mut position);
// Transmit gps position
let lat = position.lat;
let long = position.long;
writeln!(serialbuf, "lat: {} long: {}", lat, long).unwrap();
transmit_uart_uart_data(
uart_data.as_mut().unwrap(),
serialbuf);
Update our main loop
to update and transmit GPS coordinates.
Flash the program.
cargo run --example gps
The GPS coordinates should now be displayed on the terminal
Look Angles
We can further calculate for look angles using the below function which implements a satellite look angle calculator.
fn get_look_angles(lat: f32, long: f32, alt: f32) -> (f32, f32) {
// Earth Station in radians
let le: f32 = lat*PI/180.; // Latitude: N +ve, S -ve??
let ie: f32 = long*PI/180.; // Longitude: E +ve, W -ve??
let _h: f32 = alt; // Altitude
// Satellite position in radians
const _LS: f32 = 0.;// Latitude
const IS: f32 = 50.*PI/180.;// Longitude
// Determine Differential Longitude, b
let b = ie - IS;
let mut theta = (((le.cos()*b.cos())-0.151)/(1.-(le.cos()*le.cos()*b.cos()*b.cos())).sqrt()).atan();
let mut ai = (b.tan()/le.sin()).atan();
// Convert into Deg.
theta *= 180.0/PI;
ai *= 180./PI;
// Azimuth Angle
let phi_z = {
if (le < 0.) && (b > 0.) {
360. - ai
} else if (le > 0.) && (b < 0.) {
180. + ai
} else if (le > 0.) && (b > 0.) {
180. - ai
} else {
ai
}
};
(theta, phi_z)
}
Import PI
from the core library that'll be used in the get_look_angles
function.
use core::f32::consts::PI;
Also import the micromath
crate to facilitate the function.
use micromath::F32Ext;
In the toml
file under dependencies add:
micromath = "1.1.1"
Update the loop
section to calculate the look angles and transmit via uart0
.
// Calculate look angles
(theta, phi) = get_look_angles(
position.lat,
position.long,
position.alt);
writeln!(serialbuf, "theta: {} phi: {}", theta, phi).unwrap();
transmit_uart_uart_data(
uart_data.as_mut().unwrap(),
serialbuf);
We will the continue with initializing both theta
and phi
in the set-up section.
// Variables
let (mut theta, mut phi) = (0., 0.);
Results
The final code will be this.
Highlights of changes made are here.
Flashing this into the Pico, we should be able to receive the raw GPS data from the Neo-6m module and calculate look angles.
In the next part we continue with the application of the above in our main program.
Posted on November 24, 2024
Join Our Newsletter. No Spam, Only the good stuff.
Sign up to receive the latest update from our blog.