sum and nansum in PyTorch

hyperkai

Super Kai (Kazuya Ito)

Posted on July 18, 2024

sum and nansum in PyTorch

Buy Me a Coffee

*Memos:

sum() can get the 0D or more D tensor of zero or more sum's elements, normally treating one or more NaNs(Not a Numbers) from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • sum() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is dim(Optional-Type:int, tuple of int or list of int).
  • The 3rd argument with torch or the 2nd argument with a tensor is keepdim(Optional-Default:False-Type:bool): *Memos:
    • keepdim= must be used with dim=.
    • My post explains keepdim argument.
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
    • If it's None, it's inferred from input or a tensor.
    • dtype= must be used.
    • My post explains dtype argument.
  • Normally, the arithmetic operation with a NaN results in a NaN.
  • The empty 1D or more D input tensor or tensor without dim or with the deepest dim gets a zero.
import torch

my_tensor = torch.tensor([1, 2, 3, 4])

torch.sum(input=my_tensor)
my_tensor.sum()
torch.sum(input=my_tensor, dim=0)
torch.sum(input=my_tensor, dim=-1)
torch.sum(input=my_tensor, dim=(0,))
torch.sum(input=my_tensor, dim=(-1,))
# tensor(10)

my_tensor = torch.tensor([1, 2, torch.nan, 4])

torch.sum(input=my_tensor)
# tensor(nan)

my_tensor = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]])

torch.sum(input=my_tensor)
torch.sum(input=my_tensor, dim=(0, 1))
torch.sum(input=my_tensor, dim=(0, -1))
torch.sum(input=my_tensor, dim=(1, 0))
torch.sum(input=my_tensor, dim=(1, -2))
torch.sum(input=my_tensor, dim=(-1, 0))
torch.sum(input=my_tensor, dim=(-1, -2))
torch.sum(input=my_tensor, dim=(-2, 1))
torch.sum(input=my_tensor, dim=(-2, -1))
# tensor(36)

torch.sum(input=my_tensor, dim=0)
torch.sum(input=my_tensor, dim=-2)
torch.sum(input=my_tensor, dim=(0,))
torch.sum(input=my_tensor, dim=(-2,))
# tensor([6, 8, 10, 12])

torch.sum(input=my_tensor, dim=1)
torch.sum(input=my_tensor, dim=-1)
torch.sum(input=my_tensor, dim=(1,))
torch.sum(input=my_tensor, dim=(-1,))
# tensor([10, 26])

my_tensor = torch.tensor([[1, 2, torch.nan, 4], [torch.nan, 6, 7, 8]])

torch.sum(input=my_tensor)
# tensor(nan)

torch.sum(input=my_tensor, dim=0)
# tensor([nan, 8., nan, 12.])

torch.sum(input=my_tensor, dim=1)
# tensor([nan, nan])

my_tensor = torch.tensor([[1., 2., 3., 4.], [5., 6., 7., 8.]])

torch.sum(input=my_tensor)
# tensor(36.)

my_tensor = torch.tensor([[1, 2, torch.nan, 4], [torch.nan, 6, 7, 8]])

torch.sum(input=my_tensor)
# tensor(nan)

my_tensor = torch.tensor([[1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j],
                          [5.+0.j, 6.+0.j, 7.+0.j, 8.+0.j]])
torch.sum(input=my_tensor)
# tensor(36.+0.j)

my_tensor = torch.tensor([[1.+0.j, 2.+0.j, torch.nan, 4.+0.j],
                          [torch.nan, 6.+0.j, 7.+0.j, 8.+0.j]])
torch.sum(input=my_tensor)
# tensor(nan+0.j)

my_tensor = torch.tensor([[True, False, True, False],
                          [False, True, False, True]])
torch.sum(input=my_tensor)
# tensor(4)

my_tensor = torch.tensor([])

torch.sum(input=my_tensor)
# tensor(0.)
Enter fullscreen mode Exit fullscreen mode

nansum() can get the 0D or more D tensor of zero or more sum's elements, treating nan as zero from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • nansum() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float or bool).
  • The 2nd argument with torch or the 1st argument with a tensor is dim(Optional-Type:int, tuple of int or list of int).
  • The 3rd argument with torch or the 2nd argument with a tensor is keepdim(Optional-Default:False-Type:bool): *Memos:
    • keepdim= must be used with dim=.
    • My post explains keepdim argument.
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
    • If it's None, it's inferred from input or a tensor.
    • dtype= must be used.
    • My post explains dtype argument.
  • Normally, the arithmetic operation with a NaN results in a NaN.
  • The empty 1D or more D input tensor or tensor without dim or with the deepest dim gets a zero.
import torch

my_tensor = torch.tensor([1., 2., torch.nan, 4.])

torch.nansum(input=my_tensor)
my_tensor.nansum()
torch.nansum(input=my_tensor, dim=0)
torch.nansum(input=my_tensor, dim=-1)
torch.nansum(input=my_tensor, dim=(0,))
torch.nansum(input=my_tensor, dim=(-1,))
# tensor(7.)

my_tensor = torch.tensor([[1., 2., torch.nan, 4.],
                          [torch.nan, 6., 7., 8.]])
torch.nansum(input=my_tensor)
torch.nansum(input=my_tensor, dim=(0, 1))
torch.nansum(input=my_tensor, dim=(0, -1))
torch.nansum(input=my_tensor, dim=(1, 0))
torch.nansum(input=my_tensor, dim=(1, -2))
torch.nansum(input=my_tensor, dim=(-1, 0))
torch.nansum(input=my_tensor, dim=(-1, -2))
torch.nansum(input=my_tensor, dim=(-2, 1))
torch.nansum(input=my_tensor, dim=(-2, -1))
# tensor(28.)

torch.nansum(input=my_tensor, dim=0)
torch.nansum(input=my_tensor, dim=-2)
torch.nansum(input=my_tensor, dim=(0,))
torch.nansum(input=my_tensor, dim=(-2,))
# tensor([1., 8., 7., 12.])

torch.nansum(input=my_tensor, dim=1)
torch.nansum(input=my_tensor, dim=-1)
torch.nansum(input=my_tensor, dim=(1,))
torch.nansum(input=my_tensor, dim=(-1,))
# tensor([7., 21.])

my_tensor = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]])

torch.nansum(input=my_tensor)
# tensor(36)

my_tensor = torch.tensor([[True, False, True, False],
                          [False, True, False, True]])
torch.nansum(input=my_tensor)
# tensor(4)

my_tensor = torch.tensor([])

torch.nansum(input=my_tensor)
# tensor(0.)
Enter fullscreen mode Exit fullscreen mode
💖 💪 🙅 🚩
hyperkai
Super Kai (Kazuya Ito)

Posted on July 18, 2024

Join Our Newsletter. No Spam, Only the good stuff.

Sign up to receive the latest update from our blog.

Related

sum and nansum in PyTorch
python sum and nansum in PyTorch

July 18, 2024