ones and ones_like in PyTorch

hyperkai

Super Kai (Kazuya Ito)

Posted on July 9, 2024

ones and ones_like in PyTorch

Buy Me a Coffee

*My post explains zeros() and zeros_like().

ones() can create the 1D or more D tensor of zero or more 1., 1, 1.+0.j or True as shown below:

*Memos:

  • ones() can be used with torch but not with a tensor.
  • The 1st or more arguments with torch are size(Required-Type:int, tuple of int, list of int or size()).
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
  • There is device argument with torch(Optional-Default:None-Type:str, int or device()): *Memos:
  • There is requires_grad argument with torch(Optional-Default:False-Type:bool): *Memos:
    • requires_grad= must be used.
    • My post explains requires_grad argument.
  • There is out argument with torch(Optional-Default:None-Type:tensor): *Memos:
    • out= must be used.
    • My post explains out argument.
import torch

torch.ones(size=())
torch.ones(size=torch.tensor(8).size())
# tensor(1.)

torch.ones(size=(0,))
torch.ones(0)
torch.ones(size=torch.tensor([]).size())
# tensor([])

torch.ones(size=(3,))
torch.ones(3)
torch.ones(size=torch.tensor([8, 3, 6]).size())
# tensor([1., 1., 1.])

torch.ones(size=(3, 2))
torch.ones(3, 2)
torch.ones(size=torch.tensor([[8, 3], [6, 0], [2, 9]]).size())
# tensor([[1., 1.], [1., 1.], [1., 1.]])

torch.ones(size=(3, 2, 4))
torch.ones(3, 2, 4)
# tensor([[[1., 1., 1., 1.], [1., 1., 1., 1.]],
#         [[1., 1., 1., 1.], [1., 1., 1., 1.]],
#         [[1., 1., 1., 1.], [1., 1., 1., 1.]]])

torch.ones(size=(3, 2, 4), dtype=torch.int64)
torch.ones(3, 2, 4, dtype=torch.int64)
# tensor([[[1, 1, 1, 1], [1, 1, 1, 1]],
#         [[1, 1, 1, 1], [1, 1, 1, 1]],
#         [[1, 1, 1, 1], [1, 1, 1, 1]]])

torch.ones(size=(3, 2, 4), dtype=torch.complex64)
torch.ones(3, 2, 4, dtype=torch.complex64)
# tensor([[[1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j],
#          [1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]],
#         [[1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j],
#          [1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]],
#         [[1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j],
#          [1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]]])

torch.ones(size=(3, 2, 4), dtype=torch.bool)
torch.ones(3, 2, 4, dtype=torch.bool)
# tensor([[[True, True, True, True],
#          [True, True, True, True]],
#         [[True, True, True, True],
#          [True, True, True, True]],
#         [[True, True, True, True],
#          [True, True, True, True]]])
Enter fullscreen mode Exit fullscreen mode

ones_like() can replace the zero or more integers, floating-point numbers, integers, complex numbers or boolean values of a 0D or more D tensor with zero or more 1., 1, 1.+0.j or True as shown below:

*Memos:

  • ones_like() can be used with torch but not with a tensor.
  • The 1st argument with torch is input(Required-Type:tensor of int, float, complex or bool).
  • There is dtype argument with torch(Optional-Default:None-Type:dtype): *Memos:
    • If it's None, it's inferred from input.
    • dtype= must be used.
    • My post explains dtype argument.
  • There is device argument with torch(Optional-Default:None-Type:str, int or device()): *Memos:
    • If it's None, it's inferred from input.
    • device= must be used.
    • My post explains device argument.
  • There is requires_grad argument with torch(Optional-Default:False-Type:bool): *Memos:
    • requires_grad= must be used.
    • My post explains requires_grad argument.
import torch

my_tensor = torch.tensor(7.)

torch.ones_like(input=my_tensor)
# tensor(1.)

my_tensor = torch.tensor([7., 4., 5.])

torch.ones_like(input=my_tensor)
# tensor([1., 1., 1.])

my_tensor = torch.tensor([[7., 4., 5.], [2., 8., 3.]])

torch.ones_like(input=my_tensor)
# tensor([[1., 1., 1.], [1., 1., 1.]])

my_tensor = torch.tensor([[[7., 4., 5.], [2., 8., 3.]],
                          [[6., 0., 1.], [5., 9., 4.]]])
torch.ones_like(input=my_tensor)
# tensor([[[1., 1., 1.], [1., 1., 1.]],
#         [[1., 1., 1.], [1., 1., 1.]]])

my_tensor = torch.tensor([[[7, 4, 5], [2, 8, 3]],
                          [[6, 0, 1], [5, 9, 4]]])
torch.ones_like(input=my_tensor)
# tensor([[[1, 1, 1], [1, 1, 1]],
#         [[1, 1, 1], [1, 1, 1]]])

my_tensor = torch.tensor([[[7.+4.j, 4.+2.j, 5.+3.j],
                           [2.+5.j, 8.+1.j, 3.+9.j]],
                          [[6.+9.j, 0.+3.j, 1.+8.j],
                           [5.+3.j, 9.+4.j, 4.+6.j]]])
torch.ones_like(input=my_tensor)
# tensor([[[1.+0.j, 1.+0.j, 1.+0.j],
#          [1.+0.j, 1.+0.j, 1.+0.j]],
#         [[1.+0.j, 1.+0.j, 1.+0.j],
#          [1.+0.j, 1.+0.j, 1.+0.j]]])

my_tensor = torch.tensor([[[True, False, True], [False, True, False]], 
                          [[False, True, False], [True, False, True]]])
torch.ones_like(input=my_tensor)
# tensor([[[True, True, True], [True, True, True]],
#         [[True, True, True], [True, True, True]]])
Enter fullscreen mode Exit fullscreen mode
💖 💪 🙅 🚩
hyperkai
Super Kai (Kazuya Ito)

Posted on July 9, 2024

Join Our Newsletter. No Spam, Only the good stuff.

Sign up to receive the latest update from our blog.

Related

ones and ones_like in PyTorch
python ones and ones_like in PyTorch

July 9, 2024