HuberLoss in PyTorch

hyperkai

Super Kai (Kazuya Ito)

Posted on August 18, 2024

HuberLoss in PyTorch

Buy Me a Coffee

*Memos:

HuberLoss() can get the 0D or more D tensor of the zero or more values(float) computed by Huber Loss from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • The 1st argument for initialization is reduction(Optional-Default:'mean'-Type:str). *'none', 'mean' or 'sum' can be selected.
  • The 2nd argument for initialization is delta(Optional-Default:1.0-Type:float). *It must be 0<delta.
  • The 1st argument is input(Required-Type:tensor of float).
  • The 2nd argument is target(Required-Type:tensor of float).
  • input and target should be the same size otherwise there is a warning.
  • The empty 1D or more D input and target tensors with reduction='mean' return nan.
  • The empty 1D or more D input and target tensors with reduction='sum' return 0.. Image description
import torch
from torch import nn

tensor1 = torch.tensor([ 0.4, -0.8, -0.6,  0.3,  0.0, -0.5])
tensor2 = torch.tensor([-0.2,  0.9,  0.4,  0.1,  0.8, -0.5])
                      # 0.5*(x-y)^2 because |x-y| < delta
                      # 0.5*(0.4-(-0.2))^2 = 0.18
                      # ↓↓↓↓               ↓↓↓↓   ↓↓↓↓   ↓↓↓
                      # 0.18 + 1.2 + 0.5 + 0.02 + 0.32 + 0.0 = 2.22
                      #        ↑↑↑   ↑↑↑ 
                      # delta(|x-y|-0.5*delta) because |x-y| >= delta
                      # 1.0*((|-0.8-0.9|)-0.5*1.0) = 1.2
                      # 
                      # 2.22 / 6 = 0.37
huberloss = nn.HuberLoss()
huberloss(input=tensor1, target=tensor2)
# tensor(0.3700)

huberloss
# HuberLoss()

huberloss.reduction
# 'mean'

huberloss.delta
# 1.0

huberloss = nn.HuberLoss(reduction='mean', delta=1.0)
huberloss(input=tensor1, target=tensor2)
# tensor(0.3700)

huberloss = nn.HuberLoss(reduction='sum', delta=1.0)
huberloss(input=tensor1, target=tensor2)
# tensor(2.2200)

huberloss = nn.HuberLoss(reduction='none', delta=1.0)
huberloss(input=tensor1, target=tensor2)
# tensor([0.1800, 1.2000, 0.5000, 0.0200, 0.3200, 0.0000])

huberloss = nn.HuberLoss(delta=0.5)
huberloss(input=tensor1, target=tensor2)
# tensor(0.2617)

huberloss = nn.HuberLoss(delta=1.5)
huberloss(input=tensor1, target=tensor2)
# tensor(0.4075)

huberloss = nn.HuberLoss(delta=2.0)
huberloss(input=tensor1, target=tensor2)
# tensor(0.4108)

huberloss = nn.HuberLoss(delta=3.0)
huberloss(input=tensor1, target=tensor2)
# tensor(0.4108)

tensor1 = torch.tensor([[0.4, -0.8, -0.6], [0.3, 0.0, -0.5]])
tensor2 = torch.tensor([[-0.2, 0.9, 0.4], [0.1, 0.8, -0.5]])

huberloss = nn.HuberLoss()
huberloss(input=tensor1, target=tensor2)
# tensor(0.3700)

tensor1 = torch.tensor([[[0.4], [-0.8], [-0.6]], [[0.3], [0.0], [-0.5]]])
tensor2 = torch.tensor([[[-0.2], [0.9], [0.4]], [[0.1], [0.8], [-0.5]]])

huberloss = nn.HuberLoss()
huberloss(input=tensor1, target=tensor2)
# tensor(0.3700)

tensor1 = torch.tensor([])
tensor2 = torch.tensor([])

huberloss = nn.HuberLoss(reduction='mean')
huberloss(input=tensor1, target=tensor2)
# tensor(nan)

huberloss = nn.HuberLoss(reduction='sum')
huberloss(input=tensor1, target=tensor2)
# tensor(0.)
Enter fullscreen mode Exit fullscreen mode
💖 💪 🙅 🚩
hyperkai
Super Kai (Kazuya Ito)

Posted on August 18, 2024

Join Our Newsletter. No Spam, Only the good stuff.

Sign up to receive the latest update from our blog.

Related

HuberLoss in PyTorch
python HuberLoss in PyTorch

August 18, 2024