flip in PyTorch

hyperkai

Super Kai (Kazuya Ito)

Posted on July 12, 2024

flip in PyTorch

Buy Me a Coffee

*My post explains flipud().

flip() can get the 0D or more D tensor of reversed zero or more elements from the 0D or more D tensor of zero or more elements as shown below:

*Memos:

  • flip() can be used with torch or a tensor.
  • The 1st argument(input) with torch or using a tensor(Required-Type:tensor of int, float, complex or bool).
  • The 2nd argument with torch or the 1st or more arguments with a tensor are dims(Required-Type:int, tuple of int or list of int). *Each number must be unique.
import torch

my_tensor = torch.tensor(2) # 0D tensor

torch.flip(input=my_tensor, dims=(0,))
my_tensor.flip(dims=(0,))
my_tensor.flip(0)
torch.flip(input=my_tensor, dims=(-1,))
# tensor(2)

my_tensor = torch.tensor([2, 7, 4]) # 1D tensor

torch.flip(input=my_tensor, dims=(0,))
torch.flip(input=my_tensor, dims=(-1,))
# tensor([4, 7, 2])

my_tensor = torch.tensor([[2, 7, 4], [8, 3, 2]]) # 2D tensor

torch.flip(input=my_tensor, dims=(0,))
torch.flip(input=my_tensor, dims=(-2,))
# tensor([[8, 3, 2], [2, 7, 4]])

torch.flip(input=my_tensor, dims=(1,))
torch.flip(input=my_tensor, dims=(-1,))
# tensor([[4, 7, 2], [2, 3, 8]])

torch.flip(input=my_tensor, dims=(0, 1))
torch.flip(input=my_tensor, dims=(0, -1))
torch.flip(input=my_tensor, dims=(1, 0))
torch.flip(input=my_tensor, dims=(1, -2))
torch.flip(input=my_tensor, dims=(-1, 0))
torch.flip(input=my_tensor, dims=(-1, -2))
torch.flip(input=my_tensor, dims=(-2, 1))
torch.flip(input=my_tensor, dims=(-2, -1))
# tensor([[2, 3, 8], [4, 7, 2]])

my_tensor = torch.tensor([[[2, 7, 4], [8, 3, 2]], # 3D tensor
                          [[5, 0, 8], [3, 6, 1]]])
torch.flip(input=my_tensor, dims=(0,))
torch.flip(input=my_tensor, dims=(-3,))
# tensor([[[5, 0, 8], [3, 6, 1]],
#         [[2, 7, 4], [8, 3, 2]]])

torch.flip(input=my_tensor, dims=(1,))
torch.flip(input=my_tensor, dims=(-2,))
# tensor([[[8, 3, 2], [2, 7, 4]],
#         [[3, 6, 1], [5, 0, 8]]])

torch.flip(input=my_tensor, dims=(2,))
torch.flip(input=my_tensor, dims=(-1,))
# tensor([[[4, 7, 2], [2, 3, 8]],
#         [[8, 0, 5], [1, 6, 3]]])

torch.flip(input=my_tensor, dims=(0, 1))
torch.flip(input=my_tensor, dims=(0, -2))
torch.flip(input=my_tensor, dims=(1, 0))
torch.flip(input=my_tensor, dims=(1, -3))
torch.flip(input=my_tensor, dims=(-2, 0))
torch.flip(input=my_tensor, dims=(-2, -3))
torch.flip(input=my_tensor, dims=(-3, 1))
torch.flip(input=my_tensor, dims=(-3, -2))
# tensor([[[3, 6, 1], [5, 0, 8]],
#         [[8, 3, 2], [2, 7, 4]]])

torch.flip(input=my_tensor, dims=(0, 2))
torch.flip(input=my_tensor, dims=(0, -1))
torch.flip(input=my_tensor, dims=(2, 0))
torch.flip(input=my_tensor, dims=(2, -3))
torch.flip(input=my_tensor, dims=(-1, 0))
torch.flip(input=my_tensor, dims=(-1, -3))
torch.flip(input=my_tensor, dims=(-3, 2))
torch.flip(input=my_tensor, dims=(-3, -1))
# tensor([[[8, 0, 5], [1, 6, 3]],
#         [[4, 7, 2], [2, 3, 8]]])

torch.flip(input=my_tensor, dims=(1, 2))
torch.flip(input=my_tensor, dims=(1, -1))
torch.flip(input=my_tensor, dims=(2, 1))
torch.flip(input=my_tensor, dims=(2, -2))
torch.flip(input=my_tensor, dims=(-1, 1))
torch.flip(input=my_tensor, dims=(-1, -2))
torch.flip(input=my_tensor, dims=(-2, 2))
torch.flip(input=my_tensor, dims=(-2, -1))
# tensor([[[2, 3, 8], [4, 7, 2]],
#         [[1, 6, 3], [8, 0, 5]]])

torch.flip(input=my_tensor, dims=(0, 1, 2))
etc.
# tensor([[[1, 6, 3], [8, 0, 5]],
#         [[2, 3, 8], [4, 7, 2]]])

my_tensor = torch.tensor([[[2., 7., 4.], [8., 3., 2.]], # 3D tensor
                          [[5., 0., 8.], [3., 6., 1.]]])
torch.flip(input=my_tensor, dims=(0,))
# tensor([[[5., 0., 8.], [3., 6., 1.]],
#         [[2., 7., 4.], [8., 3., 2.]]])

my_tensor = torch.tensor([[[2.+0.j, 7.+0.j, 4.+0.j], # 3D tensor
                           [8.+0.j, 3.+0.j, 2.+0.j]],
                          [[5.+0.j, 0.+0.j, 8.+0.j],
                           [3.+0.j, 6.+0.j, 1.+0.j]]])
torch.flip(input=my_tensor, dims=(0,))
# tensor([[[5.+0.j, 0.+0.j, 8.+0.j],
#          [3.+0.j, 6.+0.j, 1.+0.j]],
#         [[2.+0.j, 7.+0.j, 4.+0.j],
#          [8.+0.j, 3.+0.j, 2.+0.j]]])
                         # 3D tensor
my_tensor = torch.tensor([[[True, False, True], [True, False, True]],
                          [[False, True, False], [False, True, False]]])
torch.flip(input=my_tensor, dims=(0,))
# tensor([[[False, True, False], [False, True, False]],
#         [[True, False, True], [True, False, True]]])
Enter fullscreen mode Exit fullscreen mode
💖 💪 🙅 🚩
hyperkai
Super Kai (Kazuya Ito)

Posted on July 12, 2024

Join Our Newsletter. No Spam, Only the good stuff.

Sign up to receive the latest update from our blog.

Related

flip in PyTorch
python flip in PyTorch

July 12, 2024