Functional design: combinators

gcanti

Giulio Canti

Posted on February 19, 2019

Functional design: combinators

In this article the term "combinator" refers to the combinator pattern

A style of organizing libraries centered around the idea of combining things. Usually there is some type T, some "primitive" values of type T, and some "combinators" which can combine values of type T in various ways to build up more complex values of type T

So the general shape of a combinator is

combinator: Thing -> Thing
Enter fullscreen mode Exit fullscreen mode

The goal of a combinator is to create new "things" from previously defined "things".

Since the result can be passed back as input, you get a combinatorial explosion of possibilities, which makes this pattern very powerful.

If you mix and match several combinators together, you get an even larger combinatorial explosion.

So a design that you may often find in a functional module is

  • a small set of very simple "primitives"
  • a set of "combinators" for combining them into more complicated structures

Let's see some examples.

Example 1: Eq

The getEq combinator: given an instance of Eq for A, we can derive an instance of Eq for ReadonlyArray<A>

import { Eq, fromEquals } from 'fp-ts/Eq'

export function getEq<A>(E: Eq<A>): Eq<ReadonlyArray<A>> {
  return fromEquals(
    (xs, ys) =>
      xs.length === ys.length && xs.every((x, i) => E.equals(x, ys[i]))
  )
}
Enter fullscreen mode Exit fullscreen mode

Usage

/** a primitive `Eq` instance for `number` */
export const eqNumber: Eq<number> = {
  equals: (x, y) => x === y
}

// derived
export const eqNumbers: Eq<ReadonlyArray<number>> = getEq(eqNumber)

// derived
export const eqNumbersNumbers: Eq<ReadonlyArray<ReadonlyArray<number>>> = getEq(
  eqNumbers
)

// derived
export const eqNumbersNumbersNumbers: Eq<ReadonlyArray<
  ReadonlyArray<ReadonlyArray<number>>
>> = getEq(eqNumbersNumbers)

// etc...
Enter fullscreen mode Exit fullscreen mode

Another combinator, contramap: given an instance of Eq for A and a function from B to A, we can derive an instance of Eq for B

import { Eq, fromEquals } from 'fp-ts/Eq'

export const contramap = <A, B>(f: (b: B) => A) => (E: Eq<A>): Eq<B> =>
  fromEquals((x, y) => E.equals(f(x), f(y)))
Enter fullscreen mode Exit fullscreen mode

Usage

import { contramap, Eq } from 'fp-ts/Eq'
import { pipe } from 'fp-ts/function'
import * as N from 'fp-ts/number'
import * as RA from 'fp-ts/ReadonlyArray'

export interface User {
  id: number
  name: string
}

export const eqUser: Eq<User> = pipe(
  N.Eq,
  contramap((user: User) => user.id)
)

export const eqUsers: Eq<Array<User>> = RA.getEq(eqUser)
Enter fullscreen mode Exit fullscreen mode

Example 2: Monoid

The getMonoid combinator: given an instance of Monoid for A, we can derive an instance of Monoid for IO<A>

import { IO } from 'fp-ts/IO'
import { Monoid } from 'fp-ts/Monoid'

export function getMonoid<A>(M: Monoid<A>): Monoid<IO<A>> {
  return {
    concat: (x, y) => () => M.concat(x(), y()),
    empty: () => M.empty
  }
}
Enter fullscreen mode Exit fullscreen mode

We can use getMonoid to derive another combinator, replicateIO: given a number n and an action mv of type IO<void>, we can derive an action that performs n times mv

import { concatAll } from 'fp-ts/Monoid'
import { replicate } from 'fp-ts/ReadonlyArray'

/** a primitive `Monoid` instance for `void` */
export const monoidVoid: Monoid<void> = {
  concat: () => undefined,
  empty: undefined
}

export function replicateIO(n: number, mv: IO<void>): IO<void> {
  return concatAll(getMonoid(monoidVoid))(replicate(n, mv))
}
Enter fullscreen mode Exit fullscreen mode

Usage

//
// helpers
//

/** logs to the console */
export function log(message: unknown): IO<void> {
  return () => console.log(message)
}

/** returns a random integer between `low` and `high` */
export const randomInt = (low: number, high: number): IO<number> => {
  return () => Math.floor((high - low + 1) * Math.random() + low)
}

//
// program
//
import { chain } from 'fp-ts/IO'
import { pipe } from 'fp-ts/function'

function fib(n: number): number {
  return n <= 1 ? 1 : fib(n - 1) + fib(n - 2)
}

/** calculates a random fibonacci and prints the result to the console */
const printFib: IO<void> = pipe(
  randomInt(30, 35),
  chain((n) => log(fib(n)))
)

replicateIO(3, printFib)()
/*
1346269
9227465
3524578
*/
Enter fullscreen mode Exit fullscreen mode

Example 3: IO

We can build many other combinators for IO, for example the time combinator mimics the analogous Unix command: given an action IO<A>, we can derive an action IO<A> that prints to the console the elapsed time

import { IO, Monad } from 'fp-ts/IO'
import { now } from 'fp-ts/Date'
import { log } from 'fp-ts/Console'

export function time<A>(ma: IO<A>): IO<A> {
  return Monad.chain(now, (start) =>
    Monad.chain(ma, (a) =>
      Monad.chain(now, (end) =>
        Monad.map(log(`Elapsed: ${end - start}`), () => a)
      )
    )
  )
}
Enter fullscreen mode Exit fullscreen mode

Usage

time(replicateIO(3, printFib))()
/*
5702887
1346269
14930352
Elapsed: 193
*/
Enter fullscreen mode Exit fullscreen mode

With partials...

time(replicateIO(3, time(printFib)))()
/*
3524578
Elapsed: 32
14930352
Elapsed: 125
3524578
Elapsed: 32
Elapsed: 189
*/
Enter fullscreen mode Exit fullscreen mode

Can we make the time combinator more general? We'll see how in the next article.

💖 💪 🙅 🚩
gcanti
Giulio Canti

Posted on February 19, 2019

Join Our Newsletter. No Spam, Only the good stuff.

Sign up to receive the latest update from our blog.

Related