Performance trap: general libraries & helper objects

dchaley

David Haley

Posted on October 9, 2024

Performance trap: general libraries & helper objects

Convenience and performance are typically inversely correlated. If the code is easy to use, it's less optimized. If it's optimized, it's less convenient. Efficient code needs to get closer to the nitty gritty details of what is actually running, how.

I came across an example in our ongoing work to run & optimize DeepCell cellular segmentation for cancer research. The DeepCell AI model predicts which pixels are most likely to be in a cell. From there, we "flood fill" from the most likely pixels, until reaching the cell border (below some threshold).

Part of this process involves smoothing over small gaps inside predicted cells, which can happen for various reasons but isn't biologically possible. (Think donut holes, not a cell's porous membrane.)

The hole-filling algorithm goes like this:

  • Identify objects (contiguous pixels with a given cell label with the same numeric id).
  • Compute the "Euler number" of these cells, a measure of the shape's surface.
  • If the Euler Number is less than 1 (aka the surface has gaps), smooth out the holes.

Here is an example of Euler numbers from the Wikipedia article; a circle (just the line part) has an Euler characteristic of zero whereas a disk (the "filled-in" circle) has value 1.

Picture of a circular line with Euler number 0, and a circular disk with Euler number 1

We're not here to talk about defining or computing Euler numbers though. We'll talk about how the library's easy path to computing Euler numbers is quite inefficient.

First things first. We noticed the problem by looking at this profile using Speedscope:

Speedscope profile of the postprocessing runtime

It shows ~32ms (~15%) spent in regionprops. This view is left-heavy, if we go to timeline view and zoom in, we get this:

Speedscope profile zoomed in to regionprops, showing a very large number of very small function calls

(Note that we do this twice, hence ~16ms here and ~16ms elsewhere, not shown.)

This is immediately suspect: the "interesting" part of finding the objects with find_objects is that first sliver, 0.5ms. It returns a list of tuples, not a generator, so when it's done it's done. So what's up with all the other stuff? We're constructing RegionProperties objects. Let's zoom in on one of them.

Profile creating a single RegionProperty object

The tiny slivers (which we won't zoom into) are custom __setattr__ calls: the RegionProperties objects support aliasing, for instance if you set the attribute ConvexArea it redirects to a standard attribute area_convex. Even though we're not making use of that we still go through the attribute converter.

Furthermore: we aren't even using most of the properties calculated in the region properties. We only care about the Euler number:

props = regionprops(np.squeeze(label_img.astype('int')), cache=False)
for prop in props:
    if prop.euler_number < 1:
Enter fullscreen mode Exit fullscreen mode

in turn, that only uses the most basic aspect of the region properties: the image regions detected by find_objects (slices of the original image).

So, we changed the code to fill_holes code to simply bypass the regionprops general-purpose function. Instead, we call find_objects and pass the resulting image sub-regions to the euler_number function (not the method on a RegionProperties object).

Here's the pull request: deepcell-imaging#358 Skip regionprops construction

By skipping the intermediate object, we got a decent performance improvement for the fill_holes operation:

Image size Before After Speedup
260k pixels 48ms 40ms 8ms (17%)
140M pixels 15.6s 11.7s 3.9s (25%)

For the larger image, 4s is ~3% of the overall runtime– not the bulk of it, but not too shabby either.

💖 💪 🙅 🚩
dchaley
David Haley

Posted on October 9, 2024

Join Our Newsletter. No Spam, Only the good stuff.

Sign up to receive the latest update from our blog.

Related