Insertion in AVL tree
Aya Bouchiha
Posted on July 2, 2021
Hi, I'm Aya Bouchiha and today I'm going to talk about the insertion in AVL tree, but if you're not familiar with AVL trees, check these posts below :
Before we get started, I want to mention that Balance Factor
of a balanced node should be always {-1,0,1}
BalanceFactor=height(left sub-tree)-height(right sub-tree)
Insertion implementation in python from geeksforgeeks
"""
this insertion implementation is from geeksforgeeks
https://www.geeksforgeeks.org/avl-tree-set-1-insertion/
(This code is contributed by Ajitesh Pathak)
"""
class TreeNode(object):
def __init__(self, val):
self.val = val
self.left = None
self.right = None
self.height = 1
# AVL tree class which supports the
# Insert operation
class AVL_Tree(object):
# Recursive function to insert key in
# subtree rooted with node and returns
# new root of subtree.
def insert(self, root, key):
# Step 1 - Perform normal BST
if not root:
return TreeNode(key)
elif key < root.val:
root.left = self.insert(root.left, key)
else:
root.right = self.insert(root.right, key)
# Step 2 - Update the height of the
# ancestor node
root.height = 1 + max(self.getHeight(root.left),
self.getHeight(root.right))
# Step 3 - Get the balance factor
balance = self.getBalance(root)
# Step 4 - If the node is unbalanced,
# then try out the 4 cases
# Case 1 - Left Left
if balance > 1 and key < root.left.val:
return self.rightRotate(root)
# Case 2 - Right Right
if balance < -1 and key > root.right.val:
return self.leftRotate(root)
# Case 3 - Left Right
if balance > 1 and key > root.left.val:
root.left = self.leftRotate(root.left)
return self.rightRotate(root)
# Case 4 - Right Left
if balance < -1 and key < root.right.val:
root.right = self.rightRotate(root.right)
return self.leftRotate(root)
return root
def leftRotate(self, z):
y = z.right
T2 = y.left
# Perform rotation
y.left = z
z.right = T2
# Update heights
z.height = 1 + max(self.getHeight(z.left),
self.getHeight(z.right))
y.height = 1 + max(self.getHeight(y.left),
self.getHeight(y.right))
# Return the new root
return y
def rightRotate(self, z):
y = z.left
T3 = y.right
# Perform rotation
y.right = z
z.left = T3
# Update heights
z.height = 1 + max(self.getHeight(z.left),
self.getHeight(z.right))
y.height = 1 + max(self.getHeight(y.left),
self.getHeight(y.right))
# Return the new root
return y
def getHeight(self, root):
if not root:
return 0
return root.height
def getBalance(self, root):
if not root:
return 0
return self.getHeight(root.left) - self.getHeight(root.right)
def preOrder(self, root):
if not root:
return
print(root.val, end="\t")
self.preOrder(root.left)
self.preOrder(root.right)
# Driver program to test above function
myTree = AVL_Tree()
root = None
root = myTree.insert(root, 10)
root = myTree.insert(root, 20)
root = myTree.insert(root, 30)
root = myTree.insert(root, 40)
root = myTree.insert(root, 50)
root = myTree.insert(root, 25)
"""
30
/ \
20 40
/ \ \
10 25 50
"""
# Preorder Traversal
print("Preorder traversal of the","constructed AVL tree is")
myTree.preOrder(root)
for more details check this article
References and useful resources
- https://www.programiz.com/dsa/avl-tree
- https://www.geeksforgeeks.org/avl-tree-set-1-insertion/
- https://www.geeksforgeeks.org/program-to-calculate-height-and-depth-of-a-node-in-a-binary-tree/
- https://www.youtube.com/watch?v=_8qqlVH5NC0
#day_20
Happy coding!
💖 💪 🙅 🚩
Aya Bouchiha
Posted on July 2, 2021
Join Our Newsletter. No Spam, Only the good stuff.
Sign up to receive the latest update from our blog.