Want to prevent Model Overfitting?

ank1tas

Ankita Sahoo

Posted on March 9, 2024

Want to prevent Model Overfitting?

Five different techniques to prevent overfitting:

  • Early Stopping: In this method, we track the loss on the validation set during the training phase and use it to determine when to stop training such that the model is accurate but not overfitting.

  • Image Augmentation: Artificially boosting the number of images in our training set by applying random image transformations to the existing images in the training set.

  • Dropout: Removing a random selection of a fixed number of neurons in a neural network during training.

  • Increase dataset size: The more training data you feed, the less likely it is to overfit. The reason is that, as you add more data, the model cannot overfit all the samples, and is forced to generalize to make progress.

  • Regularization: Regularization is a method to constrain the model to fit our data accurately and not overfit. It can also be thought of as penalizing unnecessary complexity in our model

Did I miss anything?🤔 Let me know in the comments. Happy Learning.😊

💖 💪 🙅 🚩
ank1tas
Ankita Sahoo

Posted on March 9, 2024

Join Our Newsletter. No Spam, Only the good stuff.

Sign up to receive the latest update from our blog.

Related

Want to prevent Model Overfitting?
machinelearning Want to prevent Model Overfitting?

March 9, 2024