sppu-practical

abhijeetgavali

Abhijeet Gavali

Posted on April 23, 2024

sppu-practical

cuda mat mul

#include <cuda_runtime.h>
#include <iostream>

__global__ void matmul(int* A, int* B, int* C, int N) {
    int Row = blockIdx.y*blockDim.y+threadIdx.y;
    int Col = blockIdx.x*blockDim.x+threadIdx.x;
    if (Row < N && Col < N) {
        int Pvalue = 0;
        for (int k = 0; k < N; k++) {
            Pvalue += A[Row*N+k] * B[k*N+Col];
        }
        C[Row*N+Col] = Pvalue;
    }
}

int main() {
    int N = 512;
    int size = N * N * sizeof(int);
    int* A, * B, * C;
    int* dev_A, * dev_B, * dev_C;
    cudaMallocHost(&A, size);
    cudaMallocHost(&B, size);
    cudaMallocHost(&C, size);
    cudaMalloc(&dev_A, size);
    cudaMalloc(&dev_B, size);
    cudaMalloc(&dev_C, size);

    // Initialize matrices A and B
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            A[i*N+j] = i*N+j;
            B[i*N+j] = j*N+i;
        }
    }

    cudaMemcpy(dev_A, A, size, cudaMemcpyHostToDevice);
    cudaMemcpy(dev_B, B, size, cudaMemcpyHostToDevice);

    dim3 dimBlock(16, 16);
    dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);

    matmul<<<dimGrid, dimBlock>>>(dev_A, dev_B, dev_C, N);

    cudaMemcpy(C, dev_C, size, cudaMemcpyDeviceToHost);

    // Print the result
    for (int i = 0; i < 10; i++) {
        for (int j = 0; j < 10; j++) {
            std::cout << C[i*N+j] << " ";
        }
        std::cout << std::endl;
    }

    // Free memory
    cudaFree(dev_A);
    cudaFree(dev_B);
    cudaFree(dev_C);
    cudaFreeHost(A);
    cudaFreeHost(B);
    cudaFreeHost(C);

    return 0;
}
Enter fullscreen mode Exit fullscreen mode

cuda vec add

// program 2 

#include <iostream>  
#include <cuda_runtime.h>

using namespace std;

__global__ void addVectors(int* A, int* B, int* C, int n) 
{
    int i = blockIdx.x * blockDim.x + threadIdx.x; 
    if (i < n) 
    {
        C[i] = A[i] + B[I];
    }
}

int main() 
{
    int n = 1000000;  
    int* A, * B, * C;
    int size = n * sizeof(int);

    // Allocate memory on the host  
    cudaMallocHost(&A, size);  
    cudaMallocHost(&B, size);  
    cudaMallocHost(&C, size);

    // Initialize the vectors
    for (int i = 0; i < n; i++) 
    {
        A[i] = I;
        B[i] = i * 2;
    }
    // Allocate memory on the device  
    int* dev_A, * dev_B, * dev_C;  
    cudaMalloc(&dev_A, size);  
    cudaMalloc(&dev_B, size);  
    cudaMalloc(&dev_C, size);

    // Copy data from host to device
    cudaMemcpy(dev_A, A, size, cudaMemcpyHostToDevice);  
    cudaMemcpy(dev_B, B, size, cudaMemcpyHostToDevice);

    // Launch the kernel  
    int blockSize = 256;
    int numBlocks = (n + blockSize - 1) / blockSize;
    addVectors<<<numBlocks, blockSize>>>(dev_A, dev_B, dev_C, n);

    // Copy data from device to host
    cudaMemcpy(C, dev_C, size, cudaMemcpyDeviceToHost);

    // Print the results
    for (int i = 0; i < 10; i++) 
    {
        cout << C[i] << " ";
    }
    cout << endl;

    // Free memory  
    cudaFree(dev_A);  
    cudaFree(dev_B);  
    cudaFree(dev_C);  
    cudaFreeHost(A);  
    cudaFreeHost(B);  
    cudaFreeHost(C);

    return 0;
}
Enter fullscreen mode Exit fullscreen mode

cpp bfs dfs

#include <iostream>
#include <vector>
#include <queue>
#include <stack>
#include <omp.h>

using namespace std;

class Graph {
    int V;
    vector<vector<int>> adjList;

public:
    Graph(int V) {
        this->V = V;
        adjList.resize(V);
    }

    void addEdge(int src, int dest) {
        adjList[src].push_back(dest);
        adjList[dest].push_back(src); // For undirected graph
    }

    vector<int> getNeighbors(int vertex) {
        return adjList[vertex];
    }
};

void parallelBFS(Graph& graph, int source, vector<bool>& visited) {
    queue<int> q;
    q.push(source);
    visited[source] = true;

    while (!q.empty()) {
        int current = q.front();
        q.pop();
        cout << "Visited: " << current << endl;

        vector<int> neighbors = graph.getNeighbors(current);
        #pragma omp parallel for
        for (int i = 0; i < neighbors.size(); ++i) {
            int neighbor = neighbors[i];
            if (!visited[neighbor]) {
                visited[neighbor] = true;
                q.push(neighbor);
            }
        }
    }
}

void parallelDFS(Graph& graph, int source, vector<bool>& visited) {
    stack<int> s;
    s.push(source);
    visited[source] = true;

    while (!s.empty()) {
        int current = s.top();
        s.pop();
        cout << "Visited: " << current << endl;

        vector<int> neighbors = graph.getNeighbors(current);
        #pragma omp parallel for
        for (int i = 0; i < neighbors.size(); ++i) {
            int neighbor = neighbors[i];
            if (!visited[neighbor]) {
                visited[neighbor] = true;
                s.push(neighbor);
            }
        }
    }
}

int main() {
    int V, E;
    cout << "Enter the number of vertices: ";
    cin >> V;
    Graph graph(V);
    cout << "Enter the number of edges: ";
    cin >> E;
    cout << "Enter the edges (src dest):" << endl;
    for (int i = 0; i < E; ++i) {
        int src, dest;
        cin >> src >> dest;
        graph.addEdge(src, dest);
    }

    vector<bool> visited(V, false);

    cout << "Parallel BFS:" << endl;
    #pragma omp parallel num_threads(2)
    {
        #pragma omp single nowait
        parallelBFS(graph, 0, visited);
    }

    // Reset visited array for DFS
    fill(visited.begin(), visited.end(), false);

    cout << "Parallel DFS:" << endl;
    #pragma omp parallel num_threads(2)
    {
        #pragma omp single nowait
        parallelDFS(graph, 0, visited);
    }

    return 0;
}

Enter fullscreen mode Exit fullscreen mode

Boston

import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense, Flatten
from sklearn import preprocessing

(X_train, Y_train), (X_test, Y_test) = keras.datasets.boston_housing.load_data()

print("Training data shape:", X_train.shape)
print("Test data shape:", X_test.shape)
print("Train output data shape:", Y_train.shape)
print("Actual Test output data shape:", Y_test.shape)

##Normalize the data

X_train=preprocessing.normalize(X_train)
X_test=preprocessing.normalize(X_test)

#Model Building

X_train[0].shape
model = Sequential()
model.add(Dense(128,activation='relu',input_shape= X_train[0].shape))
model.add(Dense(64,activation='relu'))
model.add(Dense(32,activation='relu'))
model.add(Dense(1))

model.summary()

model.compile(loss='mse',optimizer='rmsprop',metrics=['mae'])

history = model.fit(X_train,Y_train,epochs=100,batch_size=1,verbose=1,validation_data=(X_test,Y_test))

results = model.evaluate(X_test, Y_test)
print(results)

Enter fullscreen mode Exit fullscreen mode

fashion

from tensorflow import keras
import numpy as np 
import matplotlib.pyplot as plt 

fashion_mnist = keras.datasets.fashion_mnist
(train_img, train_labels), (test_img, test_labels) = fashion_mnist.load_data()

train_img = train_img / 255.0
test_img = test_img / 255.0

model = keras.Sequential([keras.layers.Flatten(input_shape=(28, 28)), 
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(10, activation='softmax')])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', 
    metrics=['accuracy'])

model.fit(train_img, train_labels, epochs=10)

test_loss, test_acc = model.evaluate(test_img, test_labels)
print("accuracy of tessting: ",test_acc)

predictions = model.predict(test_img)

predicted_labels = np.argmax(predictions, axis=1)

num_rows = 5 
num_cols = 5
num_imgs = num_rows*num_cols

plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_imgs):
    plt.subplot(num_rows, 2*num_cols, 2*i+1)
    plt.imshow(test_img[1], cmap='gray')
    plt.axis("off")
    plt.subplot(num_rows, 2*num_cols, 2*i+2)
    plt.bar(range(10), predictions[i])
    plt.xticks(range(10))
    plt.ylim([0,1])
    plt.tight_layout()
    plt.title(f"predicted_labels: {predicted_labels[i]}")
    plt.show()
Enter fullscreen mode Exit fullscreen mode

imdb

from  keras.datasets import imdb

(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)

max([max(sequence) for sequence in train_data])


word_index = imdb.get_word_index()
reverse_word_index = dict([(val, key) for (key, val) in word_index.items()])
decoded_review = ' '.join([reverse_word_index.get(i-3, '?') for i in train_data[0]])

import numpy as np

def vectorize(sequences, dimension=10000): 
        results = np.zeros((len(sequences), dimension))
        for i, sequence in enumerate(sequences):
            results[i, sequence] = 1
        return results

x_train = vectorize(train_data)
x_test = vectorize(test_data)
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')


from keras import models
from keras import layers

model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))


model.compile(loss = 'binary_crossentropy',optimizer='rmsprop',  metrics = ['accuracy'])


x_val = x_train[:10000]
y_val = y_train[:10000]

partial_x = x_train[10000:]
partial_y = y_train[10000:]


history = model.fit(partial_x, partial_y, epochs=20, batch_size=512, validation_data=(x_val, y_val))
results = model.evaluate(x_test, y_test)
print(results)

Enter fullscreen mode Exit fullscreen mode

min-max cpp

#include <iostream>
#include <vector>
#include <omp.h>
#include <climits>

using namespace std;

void min_reduction(vector<int>& arr) {
  int min_value = INT_MAX;
  #pragma omp parallel for reduction(min: min_value)
  for (int i = 0; i < arr.size(); i++) {
    if (arr[i] < min_value) {
      min_value = arr[i];
    }
  }
  cout << "Minimum value: " << min_value << endl;
}

void max_reduction(vector<int>& arr) {
  int max_value = INT_MIN;
  #pragma omp parallel for reduction(max: max_value)
  for (int i = 0; i < arr.size(); i++) {
    if (arr[i] > max_value) {
      max_value = arr[i];
    }
  }
  cout << "Maximum value: " << max_value << endl;
}

void sum_reduction(vector<int>& arr) {
  int sum = 0;
   #pragma omp parallel for reduction(+: sum)
   for (int i = 0; i < arr.size(); i++) {
    sum += arr[i];
  }
  cout << "Sum: " << sum << endl;
}

void average_reduction(vector<int>& arr) {
  int sum = 0;
  #pragma omp parallel for reduction(+: sum)
  for (int i = 0; i < arr.size(); i++) {
    sum += arr[i];
  }
  cout << "Average: " << (double)sum / arr.size() << endl;
}

int main() {
  vector<int> arr;
  arr.push_back(5);
  arr.push_back(2);
  arr.push_back(9);
  arr.push_back(1);
  arr.push_back(7);
  arr.push_back(6);
  arr.push_back(8);
  arr.push_back(3);
  arr.push_back(4);

  min_reduction(arr);
  max_reduction(arr);
  sum_reduction(arr);
  average_reduction(arr);
}
Enter fullscreen mode Exit fullscreen mode

sorting

#include <iostream>
#include <vector>
#include <cstdlib>
#include <omp.h>

// Function to perform bubble sort
void bubbleSort(std::vector<int>& arr) {
    int n = arr.size();
    for (int i = 0; i < n-1; i++) {
        for (int j = 0; j < n-i-1; j++) {
            if (arr[j] > arr[j+1]) {
                std::swap(arr[j], arr[j+1]);
            }
        }
    }
}

// Function to merge two sorted subvectors
void merge(std::vector<int>& arr, int l, int m, int r) {
    int n1 = m - l + 1;
    int n2 = r - m;

    std::vector<int> L(n1), R(n2);

    for (int i = 0; i < n1; i++)
        L[i] = arr[l + i];
    for (int j = 0; j < n2; j++)
        R[j] = arr[m + 1 + j];

    int i = 0, j = 0, k = l;
    while (i < n1 && j < n2) {
        if (L[i] <= R[j]) {
            arr[k] = L[i];
            i++;
        } else {
            arr[k] = R[j];
            j++;
        }
        k++;
    }

    while (i < n1) {
        arr[k] = L[i];
        i++;
        k++;
    }

    while (j < n2) {
        arr[k] = R[j];
        j++;
        k++;
    }
}

// Function to perform merge sort
void mergeSort(std::vector<int>& arr, int l, int r) {
    if (l < r) {
        int m = l + (r - l) / 2;

        #pragma omp parallel sections
        {
            #pragma omp section
            mergeSort(arr, l, m);
            #pragma omp section
            mergeSort(arr, m + 1, r);
        }

        merge(arr, l, m, r);
    }
}

// Function to print a vector
void printVector(const std::vector<int>& arr) {
    for (int num : arr)
        std::cout << num << " ";
    std::cout << std::endl;
}

int main() {
    int n = 10000; // Size of vector
    std::vector<int> arr(n), arr_copy(n);

    // Initialize vector with random values
    srand(42);
    for (int i = 0; i < n; i++) {
        arr[i] = rand() % 10000;
        arr_copy[i] = arr[i];
    }

    std::cout << "Original vector:" << std::endl;
    printVector(arr);

    // Sequential bubble sort
    double start = omp_get_wtime();
    bubbleSort(arr);
    double end = omp_get_wtime();
    std::cout << "\nSequential Bubble Sort: " << end - start << " seconds" << std::endl;
    //printVector(arr);

    // Parallel merge sort
    start = omp_get_wtime();
    mergeSort(arr_copy, 0, n - 1);
    end = omp_get_wtime();
    std::cout << "\nParallel Merge Sort: " << end - start << " seconds" << std::endl;
    //printVector(arr_copy);

    return 0;
}

Enter fullscreen mode Exit fullscreen mode
💖 💪 🙅 🚩
abhijeetgavali
Abhijeet Gavali

Posted on April 23, 2024

Join Our Newsletter. No Spam, Only the good stuff.

Sign up to receive the latest update from our blog.

Related